Text2SQL-Bilingual / README.md
TeeA's picture
TeeA/T5-Text2SQL-Bilingual
d91bf04 verified
|
raw
history blame
6.05 kB
metadata
base_model: TeeA/T5-Text2SQL-Bilingual
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: Text2SQL-Bilingual
    results: []

Text2SQL-Bilingual

This model is a fine-tuned version of TeeA/T5-Text2SQL-Bilingual on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0018
  • Rouge1: 0.8820
  • Rouge2: 0.8188
  • Rougel: 0.8750
  • Rougelsum: 0.8750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.3182 1.0 4389 1.2317 0.8648 0.7817 0.8552 0.8551
1.2945 2.0 8778 1.2231 0.8647 0.7827 0.8562 0.8566
1.2952 3.0 13167 1.2126 0.8680 0.7884 0.8590 0.8589
1.2712 4.0 17556 1.1972 0.8651 0.7855 0.8566 0.8566
1.2547 5.0 21945 1.1891 0.8703 0.7916 0.8608 0.8611
1.2414 6.0 26334 1.1771 0.8709 0.7942 0.8621 0.8618
1.2111 7.0 30723 1.1675 0.8719 0.7964 0.8640 0.8641
1.2218 8.0 35112 1.1567 0.8699 0.7932 0.8620 0.8619
1.2086 9.0 39501 1.1489 0.8739 0.7999 0.8655 0.8654
1.1895 10.0 43890 1.1390 0.8724 0.7992 0.8657 0.8655
1.1916 11.0 48279 1.1305 0.8757 0.8012 0.8679 0.8678
1.1837 12.0 52668 1.1208 0.8750 0.8025 0.8677 0.8673
1.169 13.0 57057 1.1146 0.8774 0.8069 0.8705 0.8702
1.1581 14.0 61446 1.1097 0.8772 0.8075 0.8705 0.8702
1.1552 15.0 65835 1.1028 0.8769 0.8062 0.8698 0.8697
1.1628 16.0 70224 1.0941 0.8765 0.8051 0.8692 0.8695
1.1429 17.0 74613 1.0869 0.8780 0.8077 0.8705 0.8707
1.1403 18.0 79002 1.0827 0.8786 0.8107 0.8715 0.8715
1.114 19.0 83391 1.0781 0.8796 0.8101 0.8714 0.8716
1.1131 20.0 87780 1.0738 0.8797 0.8116 0.8720 0.8723
1.1205 21.0 92169 1.0679 0.8791 0.8110 0.8718 0.8719
1.1089 22.0 96558 1.0647 0.8781 0.8105 0.8702 0.8706
1.0958 23.0 100947 1.0583 0.8776 0.8095 0.8706 0.8707
1.0923 24.0 105336 1.0546 0.8803 0.8130 0.8729 0.8730
1.0974 25.0 109725 1.0491 0.8786 0.8104 0.8718 0.8719
1.0942 26.0 114114 1.0465 0.8819 0.8168 0.8755 0.8753
1.0719 27.0 118503 1.0434 0.8789 0.8122 0.8715 0.8714
1.0786 28.0 122892 1.0397 0.8795 0.8134 0.8721 0.8723
1.0789 29.0 127281 1.0368 0.8791 0.8124 0.8717 0.8718
1.0567 30.0 131670 1.0331 0.8815 0.8165 0.8752 0.8753
1.0708 31.0 136059 1.0298 0.8793 0.8143 0.8728 0.8727
1.0601 32.0 140448 1.0249 0.8794 0.8148 0.8731 0.8731
1.0573 33.0 144837 1.0247 0.8790 0.8159 0.8729 0.8729
1.0586 34.0 149226 1.0202 0.8783 0.8143 0.8720 0.8719
1.0569 35.0 153615 1.0179 0.8807 0.8172 0.8738 0.8737
1.0591 36.0 158004 1.0168 0.8803 0.8156 0.8733 0.8734
1.0579 37.0 162393 1.0153 0.8808 0.8170 0.8741 0.8738
1.0401 38.0 166782 1.0129 0.8801 0.8170 0.8736 0.8736
1.0316 39.0 171171 1.0110 0.8802 0.8166 0.8733 0.8733
1.0264 40.0 175560 1.0091 0.8814 0.8181 0.8744 0.8744
1.051 41.0 179949 1.0066 0.8801 0.8174 0.8733 0.8731
1.0365 42.0 184338 1.0059 0.8823 0.8196 0.8754 0.8753
1.054 43.0 188727 1.0049 0.8805 0.8169 0.8734 0.8735
1.0287 44.0 193116 1.0051 0.8839 0.8216 0.8769 0.8769
1.0293 45.0 197505 1.0040 0.8837 0.8209 0.8769 0.8770
1.0315 46.0 201894 1.0025 0.8820 0.8184 0.8751 0.8751
1.0362 47.0 206283 1.0022 0.8820 0.8191 0.8754 0.8754
1.0291 48.0 210672 1.0015 0.8824 0.8192 0.8751 0.8752
1.0246 49.0 215061 1.0019 0.8821 0.8192 0.8752 0.8753
1.0355 50.0 219450 1.0018 0.8820 0.8188 0.8750 0.8750

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2