|
--- |
|
pipeline_tag: robotics |
|
tags: |
|
- lerobot |
|
library_name: lerobot |
|
datasets: |
|
- TekbotRobotics/svla_so101_pickplace_flags_sorting |
|
--- |
|
## SmolVLA: A vision-language-action model for affordable and efficient robotics |
|
|
|
Resources and technical documentation: |
|
|
|
|
|
[Train using Google Colab Notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb#scrollTo=ZO52lcQtxseE) |
|
|
|
[SmolVLA HF Documentation](https://huggingface.co/docs/lerobot/smolvla) |
|
|
|
Designed by Tekbot Robotics and Inspired from Hugging Face. |
|
|
|
This model was finetuned on [hugging Face base model](https://huggingface.co/lerobot/smolvla_base/). |
|
|
|
Before proceeding to the next steps, you need to properly install the environment by following [Installation Guide](https://huggingface.co/docs/lerobot/installation) on the docs. |
|
|
|
Install smolvla extra dependencies: |
|
```bash |
|
pip install -e ".[smolvla]" |
|
``` |
|
|
|
Example of finetuning the smolvla pretrained model (`smolvla_base`): |
|
```bash |
|
python lerobot/scripts/train.py \ |
|
--policy.path=lerobot/smolvla_base \ |
|
--dataset.repo_id=TekbotRobotics/svla_so101_pickplace_flags_sorting \ |
|
--batch_size=8 \ |
|
--steps=2000 \ |
|
--output_dir=outputs/train/my_smolvla \ |
|
--job_name=my_smolvla_training \ |
|
--policy.device=cuda \ |
|
--wandb.enable=true |
|
``` |
|
|