File size: 18,049 Bytes
4be750a bfad6ce c397e97 bfad6ce c397e97 bfad6ce c397e97 bfad6ce aa43cb9 bfad6ce c397e97 aa43cb9 bfad6ce 5af7feb bfad6ce c397e97 bfad6ce c397e97 bfad6ce 4be750a aa43cb9 4be750a c397e97 4be750a aa43cb9 4be750a aa43cb9 4be750a 9f2b199 4be750a aa43cb9 9f2b199 4be750a c397e97 4be750a c1d6d12 4be750a 5af7feb 4be750a 32c1934 4be750a 5af7feb 4be750a 9f2b199 4be750a c397e97 4be750a c1d6d12 4be750a ce9fc6c c1d6d12 ce9fc6c bfad6ce 50a9093 bfad6ce 4be750a 9f2b199 cd9fee3 9f2b199 a30f35d 9f2b199 cd9fee3 9f2b199 a30f35d 9f2b199 a30f35d 5af7feb a30f35d 32c1934 a30f35d 32c1934 a30f35d 5af7feb 32c1934 a30f35d 9f2b199 a30f35d 5af7feb a30f35d 32c1934 a30f35d 5af7feb a30f35d 5af7feb a30f35d 32c1934 a30f35d 5af7feb a30f35d 5af7feb a30f35d 32c1934 a30f35d 5af7feb a30f35d 5af7feb a30f35d 32c1934 a30f35d 32c1934 a30f35d 5af7feb a30f35d 5af7feb a30f35d 32c1934 a30f35d 5af7feb a30f35d 32c1934 a30f35d 32c1934 a30f35d 9f2b199 4be750a c1d6d12 4be750a c1d6d12 4be750a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run pre-trained DeepSeek Coder 1.3B Model on Chat-GPT 4o generated dataset"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"import torch\n",
"import sys\n",
"import os\n",
"import sqlite3 as sql\n",
"from huggingface_hub import snapshot_download"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"is_google_colab=False"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"current_path = \"./\"\n",
"\n",
"def get_path(rel_path):\n",
" return os.path.join(current_path, rel_path)\n",
"\n",
"if is_google_colab:\n",
" hugging_face_path = snapshot_download(\n",
" repo_id=\"USC-Applied-NLP-Group/SQL-Generation\",\n",
" repo_type=\"model\", \n",
" allow_patterns=[\"src/*\", \"train-data/*\", \"deepseek-coder-1.3b-instruct/*\", \"nba-data/*\"], \n",
" )\n",
" sys.path.append(hugging_face_path)\n",
" current_path = hugging_face_path"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"from src.prompts.prompt import input_text\n",
"from src.evaluation.compare_result import compare_result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First load dataset into pandas dataframe"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total dataset examples: 1044\n",
"\n",
"\n",
"How many points did the Phoenix Suns score in the highest scoring away game they played?\n",
"SELECT MAX(pts_away) FROM game WHERE team_abbreviation_away = 'PHX';\n",
"161.0\n"
]
}
],
"source": [
"# Load dataset and check length\n",
"df = pd.read_csv(get_path(\"train-data/sql_train.tsv\"), sep=\"\\t\")\n",
"print(\"Total dataset examples: \" + str(len(df)))\n",
"print(\"\\n\")\n",
"\n",
"# Test sampling\n",
"sample = df.sample(n=1)\n",
"print(sample[\"natural_query\"].values[0])\n",
"print(sample[\"sql_query\"].values[0])\n",
"print(sample[\"result\"].values[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load pre-trained DeepSeek model using transformers and pytorch packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set device to cuda if available, otherwise CPU\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"# Load model and tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"))\n",
"model = AutoModelForCausalLM.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"), torch_dtype=torch.bfloat16, device_map=device) \n",
"model.generation_config.pad_token_id = tokenizer.pad_token_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test model performance on a single example"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SQLite:\n",
"SELECT team_abbreviation_home FROM other_stats WHERE lead_changes = 1 AND season_id = '2001';\n",
"\n"
]
}
],
"source": [
"# Create message with sample query and run model\n",
"message=[{ 'role': 'user', 'content': input_text + sample[\"natural_query\"].values[0]}]\n",
"inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"\n",
"# Print output\n",
"query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
"print(query_output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test sample output on sqlite3 database"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cleaned\n"
]
}
],
"source": [
"# Create connection to sqlite3 database\n",
"connection = sql.connect(get_path('nba-data/nba.sqlite'))\n",
"cursor = connection.cursor()\n",
"\n",
"# Execute query from model output and print result\n",
"if query_output[0:7] == \"SQLite:\":\n",
" print(\"cleaned\")\n",
" query = query_output[7:]\n",
"elif query_output[0:4] == \"SQL:\":\n",
" query = query_output[4:]\n",
"else:\n",
" query = query_output\n",
"\n",
"try:\n",
" cursor.execute(query)\n",
" rows = cursor.fetchall()\n",
" for row in rows:\n",
" print(row)\n",
"except:\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create function to compare output to ground truth result from examples"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "ImportError",
"evalue": "cannot import name 'compare_result_two' from 'src.evaluation.compare_result' (/Users/esteban/Documents/USC/spring_2025/NLP/SQL-Generation/src/evaluation/compare_result.py)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmath\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msrc\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mevaluation\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcompare_result\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m compare_result_two\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompare_result\u001b[39m(sample_query, sample_result, query_output):\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Clean model output to only have the query output\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m query_output[\u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m7\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSQLite:\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
"\u001b[0;31mImportError\u001b[0m: cannot import name 'compare_result_two' from 'src.evaluation.compare_result' (/Users/esteban/Documents/USC/spring_2025/NLP/SQL-Generation/src/evaluation/compare_result.py)"
]
}
],
"source": [
"# Obtain sample\n",
"sample = df.sample(n=1)\n",
"\n",
"print(sample[\"natural_query\"].values[0])\n",
"print(sample[\"sql_query\"].values[0])\n",
"print(sample[\"result\"].values[0])\n",
"\n",
"# Create message with sample query and run model\n",
"message=[{ 'role': 'user', 'content': input_text + sample[\"natural_query\"].values[0]}]\n",
"inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"\n",
"# Print output\n",
"query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
"print(query_output)\n",
"\n",
"result = compare_result(cursor, sample[\"sql_query\"].values[0], sample[\"result\"].values[0], query_output)\n",
"print(\"Statement valid? \" + str(result[0]))\n",
"print(\"SQLite matched? \" + str(result[1]))\n",
"print(\"Result matched? \" + str(result[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create function to evaluate pretrained model on full datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def run_evaluation(nba_df, title):\n",
" counter = 0\n",
" num_valid = 0\n",
" num_sql_matched = 0\n",
" num_result_matched = 0\n",
" for index, row in nba_df.iterrows():\n",
" # Create message with sample query and run model\n",
" message=[{ 'role': 'user', 'content': input_text + row[\"natural_query\"]}]\n",
" inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
" outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"\n",
" # Obtain output\n",
" query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
"\n",
" # Evaluate model result\n",
" valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], query_output)\n",
" if valid:\n",
" num_valid += 1\n",
" if sql_matched:\n",
" num_sql_matched += 1\n",
" if result_matched:\n",
" num_result_matched += 1\n",
"\n",
" # Break after predefined number of examples\n",
" counter += 1\n",
" if counter % 50 == 0:\n",
" print(\"Completed \" + str(counter))\n",
"\n",
" # Print evaluation results\n",
" print(\"\\n\" + title + \" results:\")\n",
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluate on less than 90 dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"Completed 200\n",
"\n",
"Less than 90 results:\n",
"Percent valid: 0.8448979591836735\n",
"Percent SQLite matched: 0.43673469387755104\n",
"Percent result matched: 0.6530612244897959\n",
"Dataset length: 245\n"
]
}
],
"source": [
"less_than_90_df = pd.read_csv(get_path(\"train-data/less_than_90.tsv\"), sep='\\t')\n",
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluate on game table queries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"Completed 200\n",
"Completed 250\n",
"Completed 300\n",
"Completed 350\n",
"Completed 400\n",
"Completed 450\n",
"Completed 500\n",
"Completed 550\n",
"Completed 600\n",
"Completed 650\n",
"Completed 700\n",
"Completed 750\n",
"Completed 800\n",
"\n",
"Queries from game results:\n",
"Percent valid: 0.7613365155131265\n",
"Percent SQLite matched: 0.13842482100238662\n",
"Percent result matched: 0.383054892601432\n",
"Dataset length: 838\n"
]
}
],
"source": [
"game_queries = pd.read_csv(get_path(\"train-data/queries_from_game.tsv\"), sep='\\t')\n",
"run_evaluation(game_queries, \"Queries from game\")\n",
"print(\"Dataset length: \" + str(len(game_queries)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on other stats queries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"\n",
"Queries from other stats results:\n",
"Percent valid: 0.21428571428571427\n",
"Percent SQLite matched: 0.01948051948051948\n",
"Percent result matched: 0.07142857142857142\n",
"Dataset length: 154\n"
]
}
],
"source": [
"other_stats_queries = pd.read_csv(get_path(\"train-data/queries_from_other_stats.tsv\"), sep='\\t')\n",
"run_evaluation(other_stats_queries, \"Queries from other stats\")\n",
"print(\"Dataset length: \" + str(len(other_stats_queries)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on team queries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"\n",
"Queries from team results:\n",
"Percent valid: 0.8653846153846154\n",
"Percent SQLite matched: 0.5961538461538461\n",
"Percent result matched: 0.7884615384615384\n",
"Dataset length: 52\n"
]
}
],
"source": [
"team_queries = pd.read_csv(get_path(\"train-data/queries_from_team.tsv\"), sep='\\t')\n",
"run_evaluation(team_queries, \"Queries from team\")\n",
"print(\"Dataset length: \" + str(len(team_queries)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on queries requiring join statements"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"\n",
"Queries with join results:\n",
"Percent valid: 0.1945945945945946\n",
"Percent SQLite matched: 0.0\n",
"Percent result matched: 0.04864864864864865\n",
"Dataset length: 185\n"
]
}
],
"source": [
"join_queries = pd.read_csv(get_path(\"train-data/with_join.tsv\"), sep='\\t')\n",
"run_evaluation(join_queries, \"Queries with join\")\n",
"print(\"Dataset length: \" + str(len(join_queries)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on queries not requiring join statements"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"Completed 200\n",
"Completed 250\n",
"Completed 300\n",
"Completed 350\n",
"Completed 400\n",
"Completed 450\n",
"Completed 500\n",
"Completed 550\n",
"Completed 600\n",
"Completed 650\n",
"Completed 700\n",
"Completed 750\n",
"Completed 800\n",
"Completed 850\n",
"\n",
"Queries without join results:\n",
"Percent valid: 0.7916181606519208\n",
"Percent SQLite matched: 0.17462165308498254\n",
"Percent result matched: 0.42374854481955765\n",
"Dataset length: 859\n"
]
}
],
"source": [
"no_join_queries = pd.read_csv(get_path(\"train-data/without_join.tsv\"), sep='\\t')\n",
"run_evaluation(no_join_queries, \"Queries without join\")\n",
"print(\"Dataset length: \" + str(len(no_join_queries)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on full training dataset"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"Completed 200\n",
"Completed 250\n",
"Completed 300\n",
"Completed 350\n",
"Completed 400\n",
"Completed 450\n",
"Completed 500\n",
"Completed 550\n",
"Completed 600\n",
"Completed 650\n",
"Completed 700\n",
"Completed 750\n",
"Completed 800\n",
"Completed 850\n",
"Completed 900\n",
"Completed 950\n",
"Completed 1000\n",
"\n",
"All training data results:\n",
"Percent valid: 0.685823754789272\n",
"Percent SQLite matched: 0.14367816091954022\n",
"Percent result matched: 0.35823754789272033\n",
"Dataset length: 1044\n"
]
}
],
"source": [
"# Run evaluation on all training data\n",
"run_evaluation(df, \"All training data\")\n",
"print(\"Dataset length: \" + str(len(df)))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "CSCI544",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|