File size: 18,049 Bytes
4be750a
 
 
 
 
 
 
 
 
bfad6ce
 
c397e97
bfad6ce
 
 
 
 
 
 
 
 
c397e97
bfad6ce
 
 
 
 
 
c397e97
bfad6ce
 
 
 
 
 
 
 
aa43cb9
bfad6ce
 
 
c397e97
 
aa43cb9
 
 
bfad6ce
 
 
 
5af7feb
bfad6ce
c397e97
 
bfad6ce
 
 
 
c397e97
bfad6ce
 
 
 
 
 
 
4be750a
 
 
 
 
 
 
 
 
aa43cb9
4be750a
 
 
 
 
 
 
 
 
c397e97
 
 
4be750a
 
 
 
 
aa43cb9
4be750a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa43cb9
4be750a
9f2b199
4be750a
 
 
 
 
aa43cb9
 
9f2b199
4be750a
 
 
 
 
 
 
 
 
 
 
c397e97
4be750a
 
 
 
 
 
 
c1d6d12
4be750a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af7feb
4be750a
 
 
 
 
 
32c1934
4be750a
 
 
 
 
5af7feb
4be750a
 
 
 
 
 
 
 
 
 
9f2b199
 
 
 
 
 
 
 
4be750a
 
 
 
 
 
 
 
 
 
 
c397e97
4be750a
 
 
c1d6d12
 
 
 
 
 
 
 
4be750a
 
 
 
ce9fc6c
 
c1d6d12
ce9fc6c
 
 
 
 
 
 
 
 
 
 
 
 
bfad6ce
50a9093
 
bfad6ce
4be750a
9f2b199
 
 
 
 
 
 
 
 
 
cd9fee3
9f2b199
a30f35d
9f2b199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9fee3
9f2b199
 
 
 
 
 
 
 
 
 
 
 
 
a30f35d
9f2b199
 
a30f35d
 
 
 
 
 
 
 
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
32c1934
 
 
a30f35d
 
32c1934
 
 
a30f35d
 
 
 
 
5af7feb
32c1934
a30f35d
9f2b199
 
 
 
 
 
a30f35d
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c1934
 
 
a30f35d
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
32c1934
 
 
a30f35d
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
32c1934
 
 
a30f35d
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
32c1934
a30f35d
32c1934
a30f35d
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c1934
 
 
a30f35d
 
 
 
 
5af7feb
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
32c1934
a30f35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c1934
 
a30f35d
 
 
 
 
 
 
 
 
9f2b199
4be750a
 
 
 
c1d6d12
4be750a
 
 
 
 
 
 
 
 
 
 
 
 
c1d6d12
4be750a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Run pre-trained DeepSeek Coder 1.3B Model on Chat-GPT 4o generated dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd \n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "import torch\n",
    "import sys\n",
    "import os\n",
    "import sqlite3 as sql\n",
    "from huggingface_hub import snapshot_download"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "is_google_colab=False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "current_path = \"./\"\n",
    "\n",
    "def get_path(rel_path):\n",
    "    return os.path.join(current_path, rel_path)\n",
    "\n",
    "if is_google_colab:\n",
    "    hugging_face_path = snapshot_download(\n",
    "        repo_id=\"USC-Applied-NLP-Group/SQL-Generation\",\n",
    "        repo_type=\"model\",  \n",
    "        allow_patterns=[\"src/*\", \"train-data/*\", \"deepseek-coder-1.3b-instruct/*\", \"nba-data/*\"], \n",
    "    )\n",
    "    sys.path.append(hugging_face_path)\n",
    "    current_path = hugging_face_path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "from src.prompts.prompt import input_text\n",
    "from src.evaluation.compare_result import compare_result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## First load dataset into pandas dataframe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total dataset examples: 1044\n",
      "\n",
      "\n",
      "How many points did the Phoenix Suns score in the highest scoring away game they played?\n",
      "SELECT MAX(pts_away) FROM game WHERE team_abbreviation_away = 'PHX';\n",
      "161.0\n"
     ]
    }
   ],
   "source": [
    "# Load dataset and check length\n",
    "df = pd.read_csv(get_path(\"train-data/sql_train.tsv\"), sep=\"\\t\")\n",
    "print(\"Total dataset examples: \" + str(len(df)))\n",
    "print(\"\\n\")\n",
    "\n",
    "# Test sampling\n",
    "sample = df.sample(n=1)\n",
    "print(sample[\"natural_query\"].values[0])\n",
    "print(sample[\"sql_query\"].values[0])\n",
    "print(sample[\"result\"].values[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load pre-trained DeepSeek model using transformers and pytorch packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set device to cuda if available, otherwise CPU\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "\n",
    "# Load model and tokenizer\n",
    "tokenizer = AutoTokenizer.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"))\n",
    "model = AutoModelForCausalLM.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"), torch_dtype=torch.bfloat16, device_map=device) \n",
    "model.generation_config.pad_token_id = tokenizer.pad_token_id"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Test model performance on a single example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SQLite:\n",
      "SELECT team_abbreviation_home FROM other_stats WHERE lead_changes = 1 AND season_id = '2001';\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Create message with sample query and run model\n",
    "message=[{ 'role': 'user', 'content': input_text + sample[\"natural_query\"].values[0]}]\n",
    "inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
    "outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
    "\n",
    "# Print output\n",
    "query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
    "print(query_output)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Test sample output on sqlite3 database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "cleaned\n"
     ]
    }
   ],
   "source": [
    "# Create connection to sqlite3 database\n",
    "connection = sql.connect(get_path('nba-data/nba.sqlite'))\n",
    "cursor = connection.cursor()\n",
    "\n",
    "# Execute query from model output and print result\n",
    "if query_output[0:7] == \"SQLite:\":\n",
    "    print(\"cleaned\")\n",
    "    query = query_output[7:]\n",
    "elif query_output[0:4] == \"SQL:\":\n",
    "    query = query_output[4:]\n",
    "else:\n",
    "    query = query_output\n",
    "\n",
    "try:\n",
    "    cursor.execute(query)\n",
    "    rows = cursor.fetchall()\n",
    "    for row in rows:\n",
    "        print(row)\n",
    "except:\n",
    "    pass"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create function to compare output to ground truth result from examples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'compare_result_two' from 'src.evaluation.compare_result' (/Users/esteban/Documents/USC/spring_2025/NLP/SQL-Generation/src/evaluation/compare_result.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[30], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmath\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msrc\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mevaluation\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcompare_result\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m compare_result_two\n\u001b[1;32m      4\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompare_result\u001b[39m(sample_query, sample_result, query_output):\n\u001b[1;32m      5\u001b[0m     \u001b[38;5;66;03m# Clean model output to only have the query output\u001b[39;00m\n\u001b[1;32m      6\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m query_output[\u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m7\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSQLite:\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
      "\u001b[0;31mImportError\u001b[0m: cannot import name 'compare_result_two' from 'src.evaluation.compare_result' (/Users/esteban/Documents/USC/spring_2025/NLP/SQL-Generation/src/evaluation/compare_result.py)"
     ]
    }
   ],
   "source": [
    "# Obtain sample\n",
    "sample = df.sample(n=1)\n",
    "\n",
    "print(sample[\"natural_query\"].values[0])\n",
    "print(sample[\"sql_query\"].values[0])\n",
    "print(sample[\"result\"].values[0])\n",
    "\n",
    "# Create message with sample query and run model\n",
    "message=[{ 'role': 'user', 'content': input_text + sample[\"natural_query\"].values[0]}]\n",
    "inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
    "outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
    "\n",
    "# Print output\n",
    "query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
    "print(query_output)\n",
    "\n",
    "result = compare_result(cursor, sample[\"sql_query\"].values[0], sample[\"result\"].values[0], query_output)\n",
    "print(\"Statement valid? \" + str(result[0]))\n",
    "print(\"SQLite matched? \" + str(result[1]))\n",
    "print(\"Result matched? \" + str(result[2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create function to evaluate pretrained model on full datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def run_evaluation(nba_df, title):\n",
    "    counter = 0\n",
    "    num_valid = 0\n",
    "    num_sql_matched = 0\n",
    "    num_result_matched = 0\n",
    "    for index, row in nba_df.iterrows():\n",
    "        # Create message with sample query and run model\n",
    "        message=[{ 'role': 'user', 'content': input_text + row[\"natural_query\"]}]\n",
    "        inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
    "        outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
    "\n",
    "        # Obtain output\n",
    "        query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
    "\n",
    "        # Evaluate model result\n",
    "        valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], query_output)\n",
    "        if valid:\n",
    "            num_valid += 1\n",
    "        if sql_matched:\n",
    "            num_sql_matched += 1\n",
    "        if result_matched:\n",
    "            num_result_matched += 1\n",
    "\n",
    "        # Break after predefined number of examples\n",
    "        counter += 1\n",
    "        if counter % 50 == 0:\n",
    "            print(\"Completed \" + str(counter))\n",
    "\n",
    "    # Print evaluation results\n",
    "    print(\"\\n\" + title + \" results:\")\n",
    "    print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
    "    print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
    "    print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evaluate on less than 90 dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "Completed 100\n",
      "Completed 150\n",
      "Completed 200\n",
      "\n",
      "Less than 90 results:\n",
      "Percent valid: 0.8448979591836735\n",
      "Percent SQLite matched: 0.43673469387755104\n",
      "Percent result matched: 0.6530612244897959\n",
      "Dataset length: 245\n"
     ]
    }
   ],
   "source": [
    "less_than_90_df = pd.read_csv(get_path(\"train-data/less_than_90.tsv\"), sep='\\t')\n",
    "run_evaluation(less_than_90_df, \"Less than 90\")\n",
    "print(\"Dataset length: \" + str(len(less_than_90_df)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evaluate on game table queries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "Completed 100\n",
      "Completed 150\n",
      "Completed 200\n",
      "Completed 250\n",
      "Completed 300\n",
      "Completed 350\n",
      "Completed 400\n",
      "Completed 450\n",
      "Completed 500\n",
      "Completed 550\n",
      "Completed 600\n",
      "Completed 650\n",
      "Completed 700\n",
      "Completed 750\n",
      "Completed 800\n",
      "\n",
      "Queries from game results:\n",
      "Percent valid: 0.7613365155131265\n",
      "Percent SQLite matched: 0.13842482100238662\n",
      "Percent result matched: 0.383054892601432\n",
      "Dataset length: 838\n"
     ]
    }
   ],
   "source": [
    "game_queries = pd.read_csv(get_path(\"train-data/queries_from_game.tsv\"), sep='\\t')\n",
    "run_evaluation(game_queries, \"Queries from game\")\n",
    "print(\"Dataset length: \" + str(len(game_queries)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluate on other stats queries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "Completed 100\n",
      "Completed 150\n",
      "\n",
      "Queries from other stats results:\n",
      "Percent valid: 0.21428571428571427\n",
      "Percent SQLite matched: 0.01948051948051948\n",
      "Percent result matched: 0.07142857142857142\n",
      "Dataset length: 154\n"
     ]
    }
   ],
   "source": [
    "other_stats_queries = pd.read_csv(get_path(\"train-data/queries_from_other_stats.tsv\"), sep='\\t')\n",
    "run_evaluation(other_stats_queries, \"Queries from other stats\")\n",
    "print(\"Dataset length: \" + str(len(other_stats_queries)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluate on team queries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "\n",
      "Queries from team results:\n",
      "Percent valid: 0.8653846153846154\n",
      "Percent SQLite matched: 0.5961538461538461\n",
      "Percent result matched: 0.7884615384615384\n",
      "Dataset length: 52\n"
     ]
    }
   ],
   "source": [
    "team_queries = pd.read_csv(get_path(\"train-data/queries_from_team.tsv\"), sep='\\t')\n",
    "run_evaluation(team_queries, \"Queries from team\")\n",
    "print(\"Dataset length: \" + str(len(team_queries)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluate on queries requiring join statements"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "Completed 100\n",
      "Completed 150\n",
      "\n",
      "Queries with join results:\n",
      "Percent valid: 0.1945945945945946\n",
      "Percent SQLite matched: 0.0\n",
      "Percent result matched: 0.04864864864864865\n",
      "Dataset length: 185\n"
     ]
    }
   ],
   "source": [
    "join_queries = pd.read_csv(get_path(\"train-data/with_join.tsv\"), sep='\\t')\n",
    "run_evaluation(join_queries, \"Queries with join\")\n",
    "print(\"Dataset length: \" + str(len(join_queries)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluate on queries not requiring join statements"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "Completed 100\n",
      "Completed 150\n",
      "Completed 200\n",
      "Completed 250\n",
      "Completed 300\n",
      "Completed 350\n",
      "Completed 400\n",
      "Completed 450\n",
      "Completed 500\n",
      "Completed 550\n",
      "Completed 600\n",
      "Completed 650\n",
      "Completed 700\n",
      "Completed 750\n",
      "Completed 800\n",
      "Completed 850\n",
      "\n",
      "Queries without join results:\n",
      "Percent valid: 0.7916181606519208\n",
      "Percent SQLite matched: 0.17462165308498254\n",
      "Percent result matched: 0.42374854481955765\n",
      "Dataset length: 859\n"
     ]
    }
   ],
   "source": [
    "no_join_queries = pd.read_csv(get_path(\"train-data/without_join.tsv\"), sep='\\t')\n",
    "run_evaluation(no_join_queries, \"Queries without join\")\n",
    "print(\"Dataset length: \" + str(len(no_join_queries)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluate on full training dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed 50\n",
      "Completed 100\n",
      "Completed 150\n",
      "Completed 200\n",
      "Completed 250\n",
      "Completed 300\n",
      "Completed 350\n",
      "Completed 400\n",
      "Completed 450\n",
      "Completed 500\n",
      "Completed 550\n",
      "Completed 600\n",
      "Completed 650\n",
      "Completed 700\n",
      "Completed 750\n",
      "Completed 800\n",
      "Completed 850\n",
      "Completed 900\n",
      "Completed 950\n",
      "Completed 1000\n",
      "\n",
      "All training data results:\n",
      "Percent valid: 0.685823754789272\n",
      "Percent SQLite matched: 0.14367816091954022\n",
      "Percent result matched: 0.35823754789272033\n",
      "Dataset length: 1044\n"
     ]
    }
   ],
   "source": [
    "# Run evaluation on all training data\n",
    "run_evaluation(df, \"All training data\")\n",
    "print(\"Dataset length: \" + str(len(df)))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "CSCI544",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}