metadata
license: apache-2.0
base_model: WKLI22/detr-resnet-50_finetuned_cppe5
tags:
- generated_from_trainer
model-index:
- name: detr-resnet-50_finetuned_cppe5
results: []
detr-resnet-50_finetuned_cppe5
This model is a fine-tuned version of WKLI22/detr-resnet-50_finetuned_cppe5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 17
- eval_batch_size: 17
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 102
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4724 | 0.07 | 2 | 0.5355 |
0.4907 | 0.14 | 4 | 0.5277 |
0.498 | 0.21 | 6 | 0.5214 |
0.534 | 0.28 | 8 | 0.5274 |
0.5305 | 0.36 | 10 | 0.5294 |
0.5096 | 0.43 | 12 | 0.5273 |
0.5149 | 0.5 | 14 | 0.5158 |
0.5099 | 0.57 | 16 | 0.5163 |
0.5308 | 0.64 | 18 | 0.5217 |
0.5164 | 0.71 | 20 | 0.5076 |
0.4932 | 0.78 | 22 | 0.5050 |
0.5151 | 0.85 | 24 | 0.5102 |
0.4982 | 0.92 | 26 | 0.5044 |
0.526 | 0.99 | 28 | 0.5096 |
0.5034 | 1.07 | 30 | 0.4980 |
0.5155 | 1.14 | 32 | 0.5067 |
0.513 | 1.21 | 34 | 0.5011 |
0.5019 | 1.28 | 36 | 0.5066 |
0.4704 | 1.35 | 38 | 0.5094 |
0.5404 | 1.42 | 40 | 0.5126 |
0.5263 | 1.49 | 42 | 0.5062 |
0.4729 | 1.56 | 44 | 0.5223 |
0.5032 | 1.63 | 46 | 0.5073 |
0.476 | 1.7 | 48 | 0.5111 |
0.4823 | 1.78 | 50 | 0.5094 |
0.5223 | 1.85 | 52 | 0.5042 |
0.4855 | 1.92 | 54 | 0.4962 |
0.5038 | 1.99 | 56 | 0.5006 |
0.5196 | 2.06 | 58 | 0.5022 |
0.4847 | 2.13 | 60 | 0.4943 |
0.4697 | 2.2 | 62 | 0.5007 |
0.4893 | 2.27 | 64 | 0.5041 |
0.4939 | 2.34 | 66 | 0.4910 |
0.5093 | 2.41 | 68 | 0.4974 |
0.4884 | 2.49 | 70 | 0.4962 |
0.5087 | 2.56 | 72 | 0.5081 |
0.4889 | 2.63 | 74 | 0.4974 |
0.486 | 2.7 | 76 | 0.5003 |
0.4747 | 2.77 | 78 | 0.4917 |
0.5028 | 2.84 | 80 | 0.4849 |
0.5366 | 2.91 | 82 | 0.4931 |
0.5083 | 2.98 | 84 | 0.4986 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2