WKLI22's picture
Training in progress, step 30
62e63e3 verified
metadata
license: apache-2.0
base_model: WKLI22/detr-resnet-50_finetuned_cppe5
tags:
  - generated_from_trainer
model-index:
  - name: detr-resnet-50_finetuned_cppe5
    results: []

detr-resnet-50_finetuned_cppe5

This model is a fine-tuned version of WKLI22/detr-resnet-50_finetuned_cppe5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.3835 0.17 5 0.4158
0.4103 0.34 10 0.4217
0.4363 0.5 15 0.3950
0.3906 0.67 20 0.4011
0.3773 0.84 25 0.4191
0.4286 1.01 30 0.4231
0.4122 1.17 35 0.3977
0.3845 1.34 40 0.3812
0.4228 1.51 45 0.3750
0.4139 1.68 50 0.4094
0.433 1.84 55 0.3887
0.3752 2.01 60 0.4064
0.3835 2.18 65 0.3992
0.3756 2.35 70 0.3898
0.3918 2.52 75 0.3946
0.3715 2.68 80 0.3972
0.379 2.85 85 0.3951
0.4104 3.02 90 0.3926
0.3769 3.19 95 0.3888
0.3807 3.35 100 0.3956
0.3737 3.52 105 0.3989
0.3634 3.69 110 0.3978
0.3922 3.86 115 0.4041
0.3768 4.03 120 0.3846
0.4015 4.19 125 0.3973
0.3655 4.36 130 0.3879
0.3934 4.53 135 0.3775
0.3586 4.7 140 0.3851
0.3628 4.86 145 0.3785
0.3859 5.03 150 0.3922
0.3938 5.2 155 0.3982
0.3766 5.37 160 0.3923
0.3622 5.53 165 0.3960
0.3632 5.7 170 0.4003
0.3569 5.87 175 0.3924
0.3461 6.04 180 0.3972
0.3745 6.21 185 0.3938
0.358 6.37 190 0.3952
0.3671 6.54 195 0.3964
0.3605 6.71 200 0.4059
0.3764 6.88 205 0.4024
0.3477 7.04 210 0.3999
0.3493 7.21 215 0.3952
0.4103 7.38 220 0.4001
0.3693 7.55 225 0.3965
0.3892 7.71 230 0.4026
0.3719 7.88 235 0.3945
0.3793 8.05 240 0.3907
0.3563 8.22 245 0.3937
0.3361 8.39 250 0.3896
0.3563 8.55 255 0.3968
0.3482 8.72 260 0.3953
0.3511 8.89 265 0.3808
0.3654 9.06 270 0.3754
0.3315 9.22 275 0.3946
0.3416 9.39 280 0.3812
0.3527 9.56 285 0.3842
0.3568 9.73 290 0.3888
0.3502 9.9 295 0.3798
0.3676 10.06 300 0.3886
0.3288 10.23 305 0.3976
0.3465 10.4 310 0.3919
0.329 10.57 315 0.3894
0.3413 10.73 320 0.3877
0.3315 10.9 325 0.3942
0.3336 11.07 330 0.3885
0.3203 11.24 335 0.3879
0.3331 11.4 340 0.3878
0.3562 11.57 345 0.3810
0.3262 11.74 350 0.3787
0.3185 11.91 355 0.3902
0.353 12.08 360 0.3885
0.3388 12.24 365 0.3842
0.3158 12.41 370 0.3809
0.3596 12.58 375 0.3876
0.342 12.75 380 0.3796
0.3295 12.91 385 0.3781
0.3154 13.08 390 0.3837
0.3233 13.25 395 0.3765
0.3314 13.42 400 0.3813
0.3291 13.58 405 0.3813
0.3334 13.75 410 0.3625
0.3392 13.92 415 0.3600
0.3053 14.09 420 0.3637
0.3501 14.26 425 0.3567
0.3426 14.42 430 0.3775
0.3581 14.59 435 0.3658
0.3177 14.76 440 0.3840
0.3241 14.93 445 0.3802
0.3206 15.09 450 0.3903
0.3341 15.26 455 0.3749
0.3388 15.43 460 0.3735
0.3353 15.6 465 0.3718
0.341 15.77 470 0.3808
0.3471 15.93 475 0.3911
0.332 16.1 480 0.3900
0.3132 16.27 485 0.3883
0.3307 16.44 490 0.3899
0.3014 16.6 495 0.3757
0.3271 16.77 500 0.3730
0.3324 16.94 505 0.3678
0.3203 17.11 510 0.3603
0.3192 17.27 515 0.3727
0.3281 17.44 520 0.4148
0.3302 17.61 525 0.3644
0.3109 17.78 530 0.3890
0.3606 17.95 535 0.3812
0.306 18.11 540 0.3622
0.3249 18.28 545 0.3559
0.3179 18.45 550 0.3595
0.3018 18.62 555 0.3686
0.2852 18.78 560 0.3501
0.3306 18.95 565 0.3684
0.294 19.12 570 0.3661
0.3103 19.29 575 0.3662
0.3123 19.45 580 0.3397
0.292 19.62 585 0.3691
0.3186 19.79 590 0.3758
0.3062 19.96 595 0.3509
0.292 20.13 600 0.3803
0.3363 20.29 605 0.3527
0.3067 20.46 610 0.3611
0.317 20.63 615 0.3676
0.3043 20.8 620 0.3676
0.3642 20.96 625 0.3785
0.3279 21.13 630 0.3957
0.3208 21.3 635 0.3788
0.3425 21.47 640 0.3791
0.2832 21.64 645 0.3816
0.3149 21.8 650 0.3693
0.312 21.97 655 0.3709
0.3276 22.14 660 0.3710
0.2862 22.31 665 0.3742
0.3234 22.47 670 0.3776
0.2984 22.64 675 0.3933
0.3204 22.81 680 0.3827
0.3107 22.98 685 0.3850
0.2908 23.14 690 0.3780
0.3171 23.31 695 0.3785
0.3248 23.48 700 0.3671
0.3164 23.65 705 0.3646
0.3249 23.82 710 0.3652
0.3001 23.98 715 0.3621
0.3039 24.15 720 0.3743
0.2927 24.32 725 0.3740
0.2946 24.49 730 0.4031
0.3636 24.65 735 0.3715
0.2915 24.82 740 0.3737
0.3202 24.99 745 0.3805
0.2904 25.16 750 0.3841
0.3031 25.32 755 0.3907
0.2904 25.49 760 0.3709
0.3098 25.66 765 0.3806
0.297 25.83 770 0.3782
0.3062 26.0 775 0.3918
0.2856 26.16 780 0.3835
0.3209 26.33 785 0.4070
0.2959 26.5 790 0.3846
0.2812 26.67 795 0.3867
0.3027 26.83 800 0.3684
0.2942 27.0 805 0.3708
0.2754 27.17 810 0.3468
0.31 27.34 815 0.3463
0.3064 27.51 820 0.3296
0.2953 27.67 825 0.3416
0.3252 27.84 830 0.3556
0.2949 28.01 835 0.3662
0.3144 28.18 840 0.3682
0.3045 28.34 845 0.3501
0.3298 28.51 850 0.3645
0.2961 28.68 855 0.3744
0.317 28.85 860 0.3807
0.3213 29.01 865 0.3620
0.297 29.18 870 0.3657
0.3132 29.35 875 0.3635
0.3002 29.52 880 0.3697
0.2904 29.69 885 0.3600
0.2853 29.85 890 0.3670
0.3265 30.02 895 0.3693
0.2964 30.19 900 0.3586
0.2842 30.36 905 0.3550
0.3038 30.52 910 0.3686
0.2875 30.69 915 0.3705
0.2871 30.86 920 0.3586
0.311 31.03 925 0.3527
0.2813 31.19 930 0.3532
0.3227 31.36 935 0.3600
0.3063 31.53 940 0.3743
0.2929 31.7 945 0.3557
0.2946 31.87 950 0.3723
0.3161 32.03 955 0.3578
0.3067 32.2 960 0.3735
0.3052 32.37 965 0.3584
0.2924 32.54 970 0.3587
0.3011 32.7 975 0.3923
0.2727 32.87 980 0.3645
0.3052 33.04 985 0.3843
0.2859 33.21 990 0.3675
0.3002 33.38 995 0.3703
0.2814 33.54 1000 0.3718
0.2935 33.71 1005 0.3766
0.3045 33.88 1010 0.3943
0.3116 34.05 1015 0.3996
0.288 34.21 1020 0.3897
0.2894 34.38 1025 0.3844
0.2773 34.55 1030 0.3639
0.2785 34.72 1035 0.3808
0.2973 34.88 1040 0.3832
0.2746 35.05 1045 0.3745
0.27 35.22 1050 0.3754
0.2895 35.39 1055 0.3727
0.3008 35.56 1060 0.3589
0.2808 35.72 1065 0.3617
0.2991 35.89 1070 0.3672
0.2941 36.06 1075 0.3735
0.2722 36.23 1080 0.3621
0.3002 36.39 1085 0.3759
0.2851 36.56 1090 0.3666
0.2832 36.73 1095 0.3617
0.2979 36.9 1100 0.3736
0.3136 37.06 1105 0.3755
0.2867 37.23 1110 0.3634
0.2891 37.4 1115 0.3671
0.2947 37.57 1120 0.3772
0.2812 37.74 1125 0.3647
0.2958 37.9 1130 0.3618
0.2829 38.07 1135 0.3812
0.3064 38.24 1140 0.3684
0.2851 38.41 1145 0.3865
0.2888 38.57 1150 0.3849
0.2772 38.74 1155 0.3930
0.287 38.91 1160 0.3837
0.3077 39.08 1165 0.3699
0.2701 39.25 1170 0.3682
0.2651 39.41 1175 0.3711
0.2935 39.58 1180 0.3974
0.2804 39.75 1185 0.3863
0.28 39.92 1190 0.4039
0.2836 40.08 1195 0.3900
0.2942 40.25 1200 0.3921
0.2881 40.42 1205 0.3855
0.2975 40.59 1210 0.3711
0.2975 40.75 1215 0.3805
0.2637 40.92 1220 0.4088
0.2761 41.09 1225 0.4052
0.2966 41.26 1230 0.3882
0.2699 41.43 1235 0.3987
0.286 41.59 1240 0.3958
0.284 41.76 1245 0.4042
0.2769 41.93 1250 0.3995
0.2868 42.1 1255 0.3761
0.2869 42.26 1260 0.3920
0.2953 42.43 1265 0.3869
0.2647 42.6 1270 0.4168
0.2737 42.77 1275 0.3879
0.2812 42.94 1280 0.3931
0.2703 43.1 1285 0.3889
0.291 43.27 1290 0.3878
0.2685 43.44 1295 0.3952
0.2924 43.61 1300 0.4158
0.2634 43.77 1305 0.3948
0.2759 43.94 1310 0.3899
0.263 44.11 1315 0.3930
0.2747 44.28 1320 0.4066
0.2842 44.44 1325 0.4001
0.2615 44.61 1330 0.3745
0.2787 44.78 1335 0.3675
0.2945 44.95 1340 0.4024
0.2693 45.12 1345 0.4002
0.2727 45.28 1350 0.3880
0.2724 45.45 1355 0.3729
0.2856 45.62 1360 0.3974
0.2719 45.79 1365 0.3912
0.2842 45.95 1370 0.3626
0.2575 46.12 1375 0.4222
0.2742 46.29 1380 0.3857
0.3015 46.46 1385 0.3772
0.2805 46.62 1390 0.4026
0.2793 46.79 1395 0.3862
0.2735 46.96 1400 0.3896
0.2915 47.13 1405 0.3672
0.2783 47.3 1410 0.3856
0.2799 47.46 1415 0.3663
0.2631 47.63 1420 0.3861
0.261 47.8 1425 0.3760
0.2928 47.97 1430 0.4153
0.2955 48.13 1435 0.3910
0.2751 48.3 1440 0.3880
0.3071 48.47 1445 0.3855
0.2908 48.64 1450 0.3677

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2