|
--- |
|
pipeline_tag: text-to-video |
|
--- |
|
AnimateDiff is a method that allows you to create videos using pre-existing Stable Diffusion Text to Image models. |
|
|
|
Converted https://huggingface.co/guoyww/animatediff/blob/main/mm_sdxl_v10_beta.ckpt to Huggingface Diffusers format using following script based Diffuser's convetion script (available https://github.com/huggingface/diffusers/blob/main/scripts/convert_animatediff_motion_module_to_diffusers.py) |
|
|
|
``` |
|
import argparse |
|
|
|
import torch |
|
|
|
from diffusers import MotionAdapter |
|
|
|
|
|
def convert_motion_module(original_state_dict): |
|
converted_state_dict = {} |
|
for k, v in original_state_dict.items(): |
|
if "pos_encoder" in k: |
|
continue |
|
|
|
else: |
|
converted_state_dict[ |
|
k.replace(".norms.0", ".norm1") |
|
.replace(".norms.1", ".norm2") |
|
.replace(".ff_norm", ".norm3") |
|
.replace(".attention_blocks.0", ".attn1") |
|
.replace(".attention_blocks.1", ".attn2") |
|
.replace(".temporal_transformer", "") |
|
] = v |
|
|
|
return converted_state_dict |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--ckpt_path", type=str, required=True) |
|
parser.add_argument("--output_path", type=str, required=True) |
|
parser.add_argument("--use_motion_mid_block", action="store_true") |
|
parser.add_argument("--motion_max_seq_length", type=int, default=32) |
|
parser.add_argument("--save_fp16", action="store_true") |
|
|
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
|
|
state_dict = torch.load(args.ckpt_path, map_location="cpu") |
|
if "state_dict" in state_dict.keys(): |
|
state_dict = state_dict["state_dict"] |
|
|
|
conv_state_dict = convert_motion_module(state_dict) |
|
adapter = MotionAdapter( |
|
use_motion_mid_block=False, |
|
motion_max_seq_length=32, |
|
block_out_channels=(320, 640, 1280), |
|
) |
|
# skip loading position embeddings |
|
adapter.load_state_dict(conv_state_dict, strict=False) |
|
adapter.save_pretrained(args.output_path) |
|
|
|
if args.save_fp16: |
|
adapter.to(torch.float16).save_pretrained(args.output_path, variant="fp16") |
|
|
|
``` |
|
|
|
The following example demonstrates how you can utilize the motion modules with an existing Stable Diffusion text to image model. |
|
|
|
#TODO |