metadata
license: apache-2.0
base_model: meta-math/MetaMath-Mistral-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: EulerMath-Mistral-7B
results: []
See axolotl config
axolotl version: 0.4.0
base_model: meta-math/MetaMath-Mistral-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: alpaca
datasets:
- path: microsoft/orca-math-word-problems-200k
type: alpaca_chat.load_qa
conversation: alpaca
- path: TIGER-Lab/MathInstruct
type: alpaca
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
#val_set_size: 0.0
output_dir: ./EulerMath-Mistral-7B-model
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: Euler
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/EulerMath-Mistral-7B
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 2 # changed
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1 # changed
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
EulerMath-Mistral-7B
This model is a fine-tuned version of meta-math/MetaMath-Mistral-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1956
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 9
- gradient_accumulation_steps: 4
- total_train_batch_size: 72
- total_eval_batch_size: 18
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.707 | 0.0 | 1 | 0.9061 |
0.3011 | 0.25 | 68 | 0.3263 |
0.2585 | 0.5 | 136 | 0.2836 |
0.2352 | 0.75 | 204 | 0.2544 |
0.2192 | 1.0 | 272 | 0.2268 |
0.1527 | 1.23 | 340 | 0.2144 |
0.1452 | 1.48 | 408 | 0.2032 |
0.144 | 1.73 | 476 | 0.1970 |
0.1441 | 1.98 | 544 | 0.1956 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0