|
--- |
|
license: apache-2.0 |
|
base_model: meta-math/MetaMath-Mistral-7B |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
model-index: |
|
- name: EulerMath-Mistral-7B |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: meta-math/MetaMath-Mistral-7B |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
chat_template: alpaca |
|
datasets: |
|
- path: microsoft/orca-math-word-problems-200k |
|
type: alpaca_chat.load_qa |
|
conversation: alpaca |
|
|
|
- path: TIGER-Lab/MathInstruct |
|
type: alpaca |
|
conversation: alpaca |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.005 |
|
#val_set_size: 0.0 |
|
|
|
output_dir: ./EulerMath-Mistral-7B-model |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
eval_sample_packing: false |
|
|
|
wandb_project: Euler |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
hub_model_id: Weyaxi/EulerMath-Mistral-7B |
|
|
|
save_safetensors: true |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 # changed |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000005 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 # changed |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
saves_per_epoch: 1 # changed |
|
debug: |
|
|
|
deepspeed: zero3_bf16.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# EulerMath-Mistral-7B |
|
|
|
This model is a fine-tuned version of [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1956 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 9 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 72 |
|
- total_eval_batch_size: 18 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.707 | 0.0 | 1 | 0.9061 | |
|
| 0.3011 | 0.25 | 68 | 0.3263 | |
|
| 0.2585 | 0.5 | 136 | 0.2836 | |
|
| 0.2352 | 0.75 | 204 | 0.2544 | |
|
| 0.2192 | 1.0 | 272 | 0.2268 | |
|
| 0.1527 | 1.23 | 340 | 0.2144 | |
|
| 0.1452 | 1.48 | 408 | 0.2032 | |
|
| 0.144 | 1.73 | 476 | 0.1970 | |
|
| 0.1441 | 1.98 | 544 | 0.1956 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |
|
|