File size: 2,482 Bytes
a59a081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-devices-sum-ver1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-devices-sum-ver1
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0935
- Rouge1: 97.2294
- Rouge2: 80.1323
- Rougel: 97.245
- Rougelsum: 97.2763
- Gen Len: 4.9507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 186 | 0.2461 | 91.9436 | 71.232 | 91.9417 | 91.9585 | 4.6644 |
| No log | 2.0 | 372 | 0.1580 | 94.5247 | 76.1321 | 94.5044 | 94.5382 | 4.8953 |
| 0.488 | 3.0 | 558 | 0.1239 | 95.8673 | 78.1183 | 95.8862 | 95.8919 | 4.9102 |
| 0.488 | 4.0 | 744 | 0.1100 | 96.5746 | 78.9878 | 96.5848 | 96.5831 | 4.9102 |
| 0.488 | 5.0 | 930 | 0.1008 | 96.9074 | 79.5536 | 96.9143 | 96.9317 | 4.9291 |
| 0.1303 | 6.0 | 1116 | 0.0974 | 96.9274 | 79.6953 | 96.933 | 96.9473 | 4.9291 |
| 0.1303 | 7.0 | 1302 | 0.0969 | 96.8041 | 79.5073 | 96.817 | 96.8266 | 4.9271 |
| 0.1303 | 8.0 | 1488 | 0.0945 | 97.1496 | 79.9757 | 97.1529 | 97.1779 | 4.9534 |
| 0.089 | 9.0 | 1674 | 0.0944 | 97.253 | 80.1236 | 97.2619 | 97.2899 | 4.9595 |
| 0.089 | 10.0 | 1860 | 0.0935 | 97.2294 | 80.1323 | 97.245 | 97.2763 | 4.9507 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|