|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-devices-sum-ver2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-devices-sum-ver2 |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1919 |
|
- Rouge1: 95.2959 |
|
- Rouge2: 72.5788 |
|
- Rougel: 95.292 |
|
- Rougelsum: 95.3437 |
|
- Gen Len: 4.5992 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 91 | 0.4308 | 87.5009 | 61.4165 | 87.6082 | 87.6628 | 4.3897 | |
|
| No log | 2.0 | 182 | 0.2945 | 91.7111 | 66.9023 | 91.706 | 91.7348 | 4.4965 | |
|
| No log | 3.0 | 273 | 0.2515 | 93.0416 | 68.8046 | 93.063 | 93.0907 | 4.516 | |
|
| No log | 4.0 | 364 | 0.2259 | 94.2097 | 70.862 | 94.2438 | 94.2767 | 4.6283 | |
|
| No log | 5.0 | 455 | 0.2148 | 94.7732 | 71.4693 | 94.78 | 94.8274 | 4.5936 | |
|
| 0.4603 | 6.0 | 546 | 0.2030 | 95.0207 | 71.7789 | 95.0212 | 95.0887 | 4.5798 | |
|
| 0.4603 | 7.0 | 637 | 0.1964 | 95.1482 | 72.3333 | 95.1651 | 95.202 | 4.6227 | |
|
| 0.4603 | 8.0 | 728 | 0.1929 | 95.3279 | 72.551 | 95.3459 | 95.3972 | 4.5825 | |
|
| 0.4603 | 9.0 | 819 | 0.1935 | 95.2413 | 72.5801 | 95.2372 | 95.3121 | 4.5992 | |
|
| 0.4603 | 10.0 | 910 | 0.1919 | 95.2959 | 72.5788 | 95.292 | 95.3437 | 4.5992 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|