File size: 6,009 Bytes
5ffa88d 38d830a 5ffa88d 8d44b8d 6e68cfe 8d44b8d 6e68cfe 8d44b8d 6e68cfe 8d44b8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
license: apache-2.0
---
### Important Links
🤖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
🤗[ModelScope](https://modelscope.cn/collections/XiYanSQL-Models-4483337b614241) |
📖[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
🌞[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
## Introduction
We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers.
- The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes.
- The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL.
- The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models.
## Model Downloads
| **Model** | **Download Latest** |
|-----------|------------------|
|XiYanSQL-QwenCoder-3B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-3B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2502)|
|XiYanSQL-QwenCoder-7B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2502)|
|XiYanSQL-QwenCoder-14B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-14B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2502)|
|XiYanSQL-QwenCoder-32B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2412) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2412)|
## Performance
The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain.
| Model name|BIRD Dev@M-Schema |BIRD Dev@DDL|Spider Test@M-Schema|Spider Test@DDL|
|-----------|:------------------:|:---------------:|:-------------------:|:---------------:|
|Codellama-34b | 33.05% | - | 67.74% | - |
|Deepseek-coder-33b | 47.52% | 44.72% | 72.39% | - |
|TableGPT2 | 46.35% | 47.07% | 74.76% | 77.28% |
|Codestral 22b | 50.52% | 47.00% | 78.45% | 75.47% |
|GLM-4-plus | 54.37% | - | 79.40% | - |
|Claude35_sonnet-1022 | 53.32% | 50.46% | 76.27% | 73.04% |
|Deepseek(v2.5-1210) | 55.74% | 55.61% | 82.08% | 80.57% |
|Gemini-1.5-pro | 61.34% | 57.89% | 85.11% | 84.00% |
|GPT-4o-0806 | 58.47% | 54.82% | 82.89% | 78.45% |
|XiYanSQL-QwenCoder-3B | 54.11% | 53.19% | 82.69% | 78.85% |
|XiYanSQL-QwenCoder-7B | 59.78% | 56.58% | 84.86% | 80.31% |
|XiYanSQL-QwenCoder-14B | 63.10% | 60.37% | 85.76% | 82.79% |
|XiYanSQL-QwenCoder-32B | 67.01% | 63.04% | 88.39% | 85.46% |
## Requirements
transformers >= 4.37.0
## Quickstart
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
```
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
【用户问题】
{question}
【数据库schema】
{db_schema}
【参考信息】
{evidence}
【用户问题】
{question}
```sql"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=1024,
temperature=0.1,
top_p=0.8,
do_sample=True,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Acknowledgments
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community! |