|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
import math |
|
from abc import abstractmethod |
|
|
|
|
|
class EmbedBlock(nn.Module): |
|
""" |
|
Any module where forward() takes embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` embeddings. |
|
""" |
|
|
|
|
|
class EmbedSequential(nn.Sequential, EmbedBlock): |
|
""" |
|
A sequential module that passes embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb): |
|
for layer in self: |
|
if isinstance(layer, EmbedBlock): |
|
x = layer(x, emb) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
def gamma_embedding(gammas, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param gammas: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, |
|
end=half, dtype=torch.float32) / half |
|
).to(device=gammas.device) |
|
args = gammas[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
class LayerNormFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, weight, bias, eps): |
|
ctx.eps = eps |
|
N, C, H, W = x.size() |
|
mu = x.mean(1, keepdim=True) |
|
var = (x - mu).pow(2).mean(1, keepdim=True) |
|
y = (x - mu) / (var + eps).sqrt() |
|
ctx.save_for_backward(y, var, weight) |
|
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
eps = ctx.eps |
|
|
|
N, C, H, W = grad_output.size() |
|
y, var, weight = ctx.saved_variables |
|
g = grad_output * weight.view(1, C, 1, 1) |
|
mean_g = g.mean(dim=1, keepdim=True) |
|
|
|
mean_gy = (g * y).mean(dim=1, keepdim=True) |
|
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) |
|
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( |
|
dim=0), None |
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
|
|
def __init__(self, channels, eps=1e-6): |
|
super(LayerNorm2d, self).__init__() |
|
self.register_parameter('weight', nn.Parameter(torch.ones(channels))) |
|
self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) |
|
self.eps = eps |
|
|
|
def forward(self, x): |
|
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) |
|
|
|
|
|
class SimpleGate(nn.Module): |
|
def forward(self, x): |
|
x1, x2 = x.chunk(2, dim=1) |
|
return x1 * x2 |
|
|
|
|
|
class CondNAFBlock(nn.Module): |
|
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): |
|
super().__init__() |
|
dw_channel = c * DW_Expand |
|
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, |
|
bias=True) |
|
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.sca_avg = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, |
|
groups=1, bias=True), |
|
) |
|
self.sca_max = nn.Sequential( |
|
nn.AdaptiveMaxPool2d(1), |
|
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, |
|
groups=1, bias=True), |
|
) |
|
|
|
|
|
self.sg = SimpleGate() |
|
|
|
ffn_channel = FFN_Expand * c |
|
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
self.norm1 = LayerNorm2d(c) |
|
self.norm2 = LayerNorm2d(c) |
|
|
|
self.dropout1 = nn.Dropout( |
|
drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
self.dropout2 = nn.Dropout( |
|
drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
|
|
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) |
|
self.gamma = nn.Parameter(torch.zeros( |
|
(1, c, 1, 1)), requires_grad=True) |
|
|
|
def forward(self, inp): |
|
x = inp |
|
|
|
x = self.norm1(x) |
|
|
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.sg(x) |
|
x_avg, x_max = x.chunk(2, dim=1) |
|
x_avg = self.sca_avg(x_avg)*x_avg |
|
x_max = self.sca_max(x_max)*x_max |
|
x = torch.cat([x_avg, x_max], dim=1) |
|
x = self.conv3(x) |
|
|
|
x = self.dropout1(x) |
|
|
|
y = inp + x * self.beta |
|
|
|
x = self.conv4(self.norm2(y)) |
|
x = self.sg(x) |
|
x = self.conv5(x) |
|
|
|
x = self.dropout2(x) |
|
|
|
return y + x * self.gamma |
|
|
|
|
|
class NAFBlock(nn.Module): |
|
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): |
|
super().__init__() |
|
dw_channel = c * DW_Expand |
|
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, |
|
bias=True) |
|
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.sca_avg = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, |
|
groups=1, bias=True), |
|
) |
|
self.sca_max = nn.Sequential( |
|
nn.AdaptiveMaxPool2d(1), |
|
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, |
|
groups=1, bias=True), |
|
) |
|
|
|
|
|
self.sg = SimpleGate() |
|
|
|
ffn_channel = FFN_Expand * c |
|
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, |
|
kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
self.norm1 = LayerNorm2d(c) |
|
self.norm2 = LayerNorm2d(c) |
|
|
|
self.dropout1 = nn.Dropout( |
|
drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
self.dropout2 = nn.Dropout( |
|
drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
|
|
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) |
|
self.gamma = nn.Parameter(torch.zeros( |
|
(1, c, 1, 1)), requires_grad=True) |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, inp): |
|
x = inp |
|
|
|
x = self.norm1(x) |
|
|
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.sg(x) |
|
x_avg, x_max = x.chunk(2, dim=1) |
|
x_avg = self.sca_avg(x_avg)*x_avg |
|
x_max = self.sca_max(x_max)*x_max |
|
x = torch.cat([x_avg, x_max], dim=1) |
|
x = self.conv3(x) |
|
|
|
x = self.dropout1(x) |
|
|
|
y = inp + x * self.beta |
|
|
|
|
|
|
|
x = self.conv4(self.norm2(y)) |
|
x = self.sg(x) |
|
x = self.conv5(x) |
|
|
|
x = self.dropout2(x) |
|
|
|
return y + x * self.gamma |
|
|
|
|
|
class UNCRTAINTS(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_dim=15, |
|
out_conv=[13], |
|
width=64, |
|
middle_blk_num=1, |
|
enc_blk_nums=[1, 1, 1, 1], |
|
dec_blk_nums=[1, 1, 1, 1], |
|
encoder_widths=[128], |
|
decoder_widths=[128,128,128,128,128], |
|
out_nonlin_mean=False, |
|
out_nonlin_var='relu', |
|
agg_mode="att_group", |
|
encoder_norm="group", |
|
decoder_norm="batch", |
|
n_head=16, |
|
d_model=256, |
|
d_k=4, |
|
pad_value=0, |
|
padding_mode="reflect", |
|
positional_encoding=True, |
|
covmode='diag', |
|
scale_by=1, |
|
separate_out=False, |
|
use_v=False, |
|
block_type='mbconv', |
|
is_mono=False |
|
): |
|
super().__init__() |
|
|
|
self.intro = nn.Conv2d(in_channels=input_dim, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, |
|
bias=True) |
|
|
|
|
|
self.ending = nn.Conv2d(in_channels=width, out_channels=out_conv[0], kernel_size=3, padding=1, stride=1, groups=1, |
|
bias=True) |
|
|
|
|
|
|
|
self.encoders = nn.ModuleList() |
|
self.cond_encoders = nn.ModuleList() |
|
|
|
self.decoders = nn.ModuleList() |
|
|
|
self.middle_blks = nn.ModuleList() |
|
|
|
self.ups = nn.ModuleList() |
|
|
|
self.downs = nn.ModuleList() |
|
self.cond_downs = nn.ModuleList() |
|
|
|
chan = width |
|
for num in enc_blk_nums: |
|
self.encoders.append( |
|
nn.Sequential( |
|
*[NAFBlock(chan) for _ in range(num)] |
|
) |
|
) |
|
self.cond_encoders.append( |
|
nn.Sequential( |
|
*[CondNAFBlock(chan) for _ in range(num)] |
|
) |
|
) |
|
self.downs.append( |
|
nn.Conv2d(chan, 2*chan, 2, 2) |
|
) |
|
self.cond_downs.append( |
|
nn.Conv2d(chan, 2*chan, 2, 2) |
|
) |
|
chan = chan * 2 |
|
|
|
self.middle_blks = \ |
|
nn.Sequential( |
|
*[NAFBlock(chan) for _ in range(middle_blk_num)] |
|
) |
|
|
|
for num in dec_blk_nums: |
|
self.ups.append( |
|
nn.Sequential( |
|
nn.Conv2d(chan, chan * 2, 1, bias=False), |
|
nn.PixelShuffle(2) |
|
) |
|
) |
|
chan = chan // 2 |
|
self.decoders.append( |
|
nn.Sequential( |
|
*[NAFBlock(chan) for _ in range(num)] |
|
) |
|
) |
|
|
|
self.padder_size = 2 ** len(self.encoders) |
|
self.map = nn.Sequential( |
|
nn.Linear(64, 256), |
|
nn.SiLU(), |
|
nn.Linear(256, 256), |
|
) |
|
|
|
def forward(self, inp): |
|
inp = self.check_image_size(inp) |
|
x = self.intro(inp) |
|
|
|
encs = [] |
|
|
|
for encoder, down in zip(self.encoders, self.downs): |
|
x = encoder(x) |
|
|
|
|
|
|
|
|
|
encs.append(x) |
|
x = down(x) |
|
|
|
|
|
x = self.middle_blks(x) |
|
|
|
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): |
|
x = up(x) |
|
x = x + enc_skip |
|
x = decoder(x) |
|
|
|
x = self.ending(x) |
|
|
|
|
|
return x |
|
|
|
def check_image_size(self, x): |
|
_, _, h, w = x.size() |
|
mod_pad_h = (self.padder_size - h % |
|
self.padder_size) % self.padder_size |
|
mod_pad_w = (self.padder_size - w % |
|
self.padder_size) % self.padder_size |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) |
|
return x |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
inp = torch.randn(1, 15, 256, 256) |
|
net = UNCRTAINTS( |
|
input_dim=15, |
|
out_conv=[13], |
|
width=64, |
|
middle_blk_num=1, |
|
enc_blk_nums=[1, 1, 1, 1], |
|
dec_blk_nums=[1, 1, 1, 1], |
|
) |
|
out = net(inp) |
|
assert out.shape == (1, 13, 256, 256) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|