|
--- |
|
library_name: transformers.js |
|
tags: |
|
- pose-estimation |
|
license: agpl-3.0 |
|
--- |
|
|
|
YOLOv8x-pose-p6 with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Perform pose-estimation w/ `Xenova/yolov8x-pose-p6`. |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; |
|
|
|
// Load model and processor |
|
const model_id = 'Xenova/yolov8x-pose-p6'; |
|
const model = await AutoModel.from_pretrained(model_id); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
|
|
// Read image and run processor |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; |
|
const image = await RawImage.read(url); |
|
const { pixel_values } = await processor(image); |
|
|
|
// Set thresholds |
|
const threshold = 0.3; // Remove detections with low confidence |
|
const iouThreshold = 0.5; // Used to remove duplicates |
|
const pointThreshold = 0.3; // Hide uncertain points |
|
|
|
// Predict bounding boxes and keypoints |
|
const { output0 } = await model({ images: pixel_values }); |
|
|
|
// Post-process: |
|
const permuted = output0[0].transpose(1, 0); |
|
// `permuted` is a Tensor of shape [ 8400, 56 ]: |
|
// - 8400 potential detections |
|
// - 56 parameters for each box: |
|
// - 4 for the bounding box dimensions (x-center, y-center, width, height) |
|
// - 1 for the confidence score |
|
// - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy) |
|
|
|
// Example code to format it nicely: |
|
const results = []; |
|
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2); |
|
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) { |
|
if (score < threshold) continue; |
|
|
|
// Get pixel values, taking into account the original image size |
|
const x1 = (xc - w / 2) / scaledWidth * image.width; |
|
const y1 = (yc - h / 2) / scaledHeight * image.height; |
|
const x2 = (xc + w / 2) / scaledWidth * image.width; |
|
const y2 = (yc + h / 2) / scaledHeight * image.height; |
|
results.push({ x1, x2, y1, y2, score, keypoints }) |
|
} |
|
|
|
|
|
// Define helper functions |
|
function removeDuplicates(detections, iouThreshold) { |
|
const filteredDetections = []; |
|
|
|
for (const detection of detections) { |
|
let isDuplicate = false; |
|
let duplicateIndex = -1; |
|
let maxIoU = 0; |
|
|
|
for (let i = 0; i < filteredDetections.length; ++i) { |
|
const filteredDetection = filteredDetections[i]; |
|
const iou = calculateIoU(detection, filteredDetection); |
|
if (iou > iouThreshold) { |
|
isDuplicate = true; |
|
if (iou > maxIoU) { |
|
maxIoU = iou; |
|
duplicateIndex = i; |
|
} |
|
} |
|
} |
|
|
|
if (!isDuplicate) { |
|
filteredDetections.push(detection); |
|
} else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) { |
|
filteredDetections[duplicateIndex] = detection; |
|
} |
|
} |
|
|
|
return filteredDetections; |
|
} |
|
|
|
function calculateIoU(detection1, detection2) { |
|
const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1)); |
|
const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1)); |
|
const overlapArea = xOverlap * yOverlap; |
|
|
|
const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1); |
|
const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1); |
|
const unionArea = area1 + area2 - overlapArea; |
|
|
|
return overlapArea / unionArea; |
|
} |
|
|
|
const filteredResults = removeDuplicates(results, iouThreshold); |
|
|
|
// Display results |
|
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) { |
|
console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`) |
|
for (let i = 0; i < keypoints.length; i += 3) { |
|
const label = model.config.id2label[Math.floor(i / 3)]; |
|
const [x, y, point_score] = keypoints.slice(i, i + 3); |
|
if (point_score < pointThreshold) continue; |
|
console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`); |
|
} |
|
} |
|
``` |
|
|
|
<details> |
|
|
|
<summary>See example output</summary> |
|
|
|
``` |
|
Found person at [535.95703125, 43.12074284553528, 644.3259429931641, 337.3436294078827] with score 0.760 |
|
- nose: (885.58, 179.72) with score 0.975 |
|
- left_eye: (897.09, 165.24) with score 0.976 |
|
- right_eye: (874.85, 164.54) with score 0.851 |
|
- left_ear: (914.39, 169.48) with score 0.806 |
|
- left_shoulder: (947.49, 252.34) with score 0.996 |
|
- right_shoulder: (840.67, 244.42) with score 0.665 |
|
- left_elbow: (1001.36, 351.66) with score 0.983 |
|
- left_wrist: (1011.84, 472.31) with score 0.954 |
|
- left_hip: (931.52, 446.28) with score 0.986 |
|
- right_hip: (860.66, 442.87) with score 0.828 |
|
- left_knee: (930.67, 625.64) with score 0.979 |
|
- right_knee: (872.17, 620.36) with score 0.735 |
|
- left_ankle: (929.01, 772.34) with score 0.880 |
|
- right_ankle: (882.23, 778.68) with score 0.454 |
|
Found person at [0.4024791717529297, 59.50179467201233, 156.87244415283203, 370.64377751350406] with score 0.853 |
|
- nose: (115.39, 198.06) with score 0.918 |
|
- left_eye: (120.26, 177.71) with score 0.830 |
|
- right_eye: (105.47, 179.69) with score 0.757 |
|
- left_ear: (144.87, 185.18) with score 0.711 |
|
- right_ear: (97.69, 188.45) with score 0.468 |
|
- left_shoulder: (178.03, 268.88) with score 0.975 |
|
- right_shoulder: (80.69, 273.99) with score 0.954 |
|
- left_elbow: (203.06, 383.33) with score 0.923 |
|
- right_elbow: (43.32, 376.35) with score 0.856 |
|
- left_wrist: (215.74, 504.02) with score 0.888 |
|
- right_wrist: (6.77, 462.65) with score 0.812 |
|
- left_hip: (165.70, 473.24) with score 0.990 |
|
- right_hip: (97.84, 471.69) with score 0.986 |
|
- left_knee: (183.26, 646.61) with score 0.991 |
|
- right_knee: (104.04, 651.17) with score 0.989 |
|
- left_ankle: (199.88, 823.24) with score 0.966 |
|
- right_ankle: (104.66, 827.66) with score 0.963 |
|
Found person at [107.49130249023438, 12.557352638244629, 501.3542175292969, 527.4827188491821] with score 0.872 |
|
- nose: (246.06, 180.81) with score 0.722 |
|
- left_eye: (236.99, 148.85) with score 0.523 |
|
- left_ear: (289.26, 152.23) with score 0.770 |
|
- left_shoulder: (391.63, 256.55) with score 0.992 |
|
- right_shoulder: (363.28, 294.56) with score 0.979 |
|
- left_elbow: (514.37, 404.61) with score 0.990 |
|
- right_elbow: (353.58, 523.61) with score 0.957 |
|
- left_wrist: (607.64, 530.43) with score 0.985 |
|
- right_wrist: (246.78, 536.33) with score 0.950 |
|
- left_hip: (563.45, 577.89) with score 0.998 |
|
- right_hip: (544.08, 613.29) with score 0.997 |
|
- left_knee: (466.57, 862.51) with score 0.996 |
|
- right_knee: (518.49, 977.99) with score 0.996 |
|
- left_ankle: (691.56, 844.49) with score 0.960 |
|
- right_ankle: (671.32, 1100.90) with score 0.953 |
|
Found person at [424.73594665527344, 68.82870757579803, 640.3419494628906, 492.8904126405716] with score 0.887 |
|
- nose: (840.26, 289.19) with score 0.991 |
|
- left_eye: (851.23, 259.92) with score 0.956 |
|
- right_eye: (823.10, 256.35) with score 0.955 |
|
- left_ear: (889.52, 278.10) with score 0.668 |
|
- right_ear: (799.80, 264.64) with score 0.771 |
|
- left_shoulder: (903.87, 398.65) with score 0.997 |
|
- right_shoulder: (743.88, 403.37) with score 0.988 |
|
- left_elbow: (921.63, 589.83) with score 0.989 |
|
- right_elbow: (699.56, 527.09) with score 0.934 |
|
- left_wrist: (959.21, 728.84) with score 0.984 |
|
- right_wrist: (790.88, 519.34) with score 0.945 |
|
- left_hip: (873.51, 720.07) with score 0.996 |
|
- right_hip: (762.29, 760.91) with score 0.990 |
|
- left_knee: (945.33, 841.65) with score 0.987 |
|
- right_knee: (813.06, 1072.57) with score 0.964 |
|
- left_ankle: (918.48, 1129.20) with score 0.871 |
|
- right_ankle: (886.91, 1053.95) with score 0.716 |
|
``` |
|
</details> |