|
"""Fast tokenization classes for Shami.""" |
|
import json |
|
from typing import TYPE_CHECKING, List, Optional, Tuple |
|
|
|
from tokenizers import pre_tokenizers |
|
|
|
from transformers.tokenization_utils_base import BatchEncoding |
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
from transformers.utils import logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.pipelines.conversational import Conversation |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"tokenizer_file": { |
|
}, |
|
} |
|
|
|
class ShamiTokenizerFast(PreTrainedTokenizerFast): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = None |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
unk_token="<|endoftext|>", |
|
bos_token="<|endoftext|>", |
|
eos_token="<|endoftext|>", |
|
pad_token="<|endoftext|>", |
|
add_prefix_space=False, |
|
**kwargs |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) |
|
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: |
|
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) |
|
pre_tok_state["add_prefix_space"] = add_prefix_space |
|
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) |
|
|
|
self.add_prefix_space = add_prefix_space |
|
|
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
if not (self.add_prefix_space or not is_split_into_words): |
|
raise Exception( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" |
|
" pretokenized inputs." |
|
) |
|
|
|
return super()._batch_encode_plus(*args, **kwargs) |
|
|
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
if not (self.add_prefix_space or not is_split_into_words): |
|
raise Exception( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" |
|
" pretokenized inputs." |
|
) |
|
|
|
return super()._encode_plus(*args, **kwargs) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|
|
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: |
|
"""This corresponds to DialoGPT variants of models.""" |
|
input_ids = [] |
|
for is_user, text in conversation.iter_texts(): |
|
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) |
|
|
|
if len(input_ids) > self.model_max_length: |
|
input_ids = input_ids[-self.model_max_length :] |
|
return input_ids |
|
|