File size: 5,446 Bytes
fa9fb88
 
 
 
 
 
0d645b7
 
 
fa9fb88
 
 
 
 
0d645b7
 
 
fa9fb88
 
 
 
 
 
 
 
 
c8349d3
 
 
 
fa9fb88
 
c8349d3
fa9fb88
c8349d3
fa9fb88
c8349d3
fa9fb88
c8349d3
 
 
fa9fb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8349d3
fa9fb88
 
 
 
 
c8349d3
fa9fb88
c8349d3
fa9fb88
c8349d3
fa9fb88
 
 
c8349d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9fb88
 
 
 
 
 
c8349d3
fa9fb88
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
base_model: meta-llama/Llama-3.2-1B
library_name: peft
license: llama3.2
metrics:
- accuracy
- f1
- recall
- precision
tags:
- generated_from_trainer
model-index:
- name: llama3.2-finetuned-newsclassify
  results: []
language:
- en
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama3.2-finetuned-newsclassify

This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0205
- Balanced Accuracy: 0.992
- Accuracy: 0.992
- F1-score: 0.9920
- Classification-report:               precision    recall  f1-score   support

           0       1.00      0.96      0.98        50
           1       1.00      1.00      1.00        50
           2       1.00      1.00      1.00        50
           3       1.00      1.00      1.00        50
           4       0.96      1.00      0.98        50

    accuracy                           0.99       250
   macro avg       0.99      0.99      0.99       250
weighted avg       0.99      0.99      0.99       250


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | F1-score | Classification-report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 0.0           | 1.0   | 157  | 0.0405          | 0.9880            | 0.988    | 0.9880   |               precision    recall  f1-score   support

           0       1.00      0.94      0.97        50
           1       1.00      1.00      1.00        50
           2       1.00      1.00      1.00        50
           3       1.00      1.00      1.00        50
           4       0.94      1.00      0.97        50

    accuracy                           0.99       250
   macro avg       0.99      0.99      0.99       250
weighted avg       0.99      0.99      0.99       250
 |
| 0.0           | 2.0   | 314  | 0.0300          | 0.9880            | 0.988    | 0.9880   |               precision    recall  f1-score   support

           0       1.00      0.94      0.97        50
           1       1.00      1.00      1.00        50
           2       1.00      1.00      1.00        50
           3       1.00      1.00      1.00        50
           4       0.94      1.00      0.97        50

    accuracy                           0.99       250
   macro avg       0.99      0.99      0.99       250
weighted avg       0.99      0.99      0.99       250
 |
| 0.0           | 3.0   | 471  | 0.0177          | 0.992             | 0.992    | 0.9920   |               precision    recall  f1-score   support

           0       1.00      0.96      0.98        50
           1       1.00      1.00      1.00        50
           2       1.00      1.00      1.00        50
           3       1.00      1.00      1.00        50
           4       0.96      1.00      0.98        50

    accuracy                           0.99       250
   macro avg       0.99      0.99      0.99       250
weighted avg       0.99      0.99      0.99       250
 |
| 0.0           | 4.0   | 628  | 0.0205          | 0.992             | 0.992    | 0.9920   |               precision    recall  f1-score   support

           0       1.00      0.96      0.98        50
           1       1.00      1.00      1.00        50
           2       1.00      1.00      1.00        50
           3       1.00      1.00      1.00        50
           4       0.96      1.00      0.98        50

    accuracy                           0.99       250
   macro avg       0.99      0.99      0.99       250
weighted avg       0.99      0.99      0.99       250
 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1