|
--- |
|
base_model: meta-llama/Llama-3.2-1B |
|
library_name: peft |
|
license: llama3.2 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama3.2-finetuned-newsclassify |
|
results: [] |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3.2-finetuned-newsclassify |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0205 |
|
- Balanced Accuracy: 0.992 |
|
- Accuracy: 0.992 |
|
- F1-score: 0.9920 |
|
- Classification-report: precision recall f1-score support |
|
|
|
0 1.00 0.96 0.98 50 |
|
1 1.00 1.00 1.00 50 |
|
2 1.00 1.00 1.00 50 |
|
3 1.00 1.00 1.00 50 |
|
4 0.96 1.00 0.98 50 |
|
|
|
accuracy 0.99 250 |
|
macro avg 0.99 0.99 0.99 250 |
|
weighted avg 0.99 0.99 0.99 250 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | F1-score | Classification-report | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.0 | 1.0 | 157 | 0.0405 | 0.9880 | 0.988 | 0.9880 | precision recall f1-score support |
|
|
|
0 1.00 0.94 0.97 50 |
|
1 1.00 1.00 1.00 50 |
|
2 1.00 1.00 1.00 50 |
|
3 1.00 1.00 1.00 50 |
|
4 0.94 1.00 0.97 50 |
|
|
|
accuracy 0.99 250 |
|
macro avg 0.99 0.99 0.99 250 |
|
weighted avg 0.99 0.99 0.99 250 |
|
| |
|
| 0.0 | 2.0 | 314 | 0.0300 | 0.9880 | 0.988 | 0.9880 | precision recall f1-score support |
|
|
|
0 1.00 0.94 0.97 50 |
|
1 1.00 1.00 1.00 50 |
|
2 1.00 1.00 1.00 50 |
|
3 1.00 1.00 1.00 50 |
|
4 0.94 1.00 0.97 50 |
|
|
|
accuracy 0.99 250 |
|
macro avg 0.99 0.99 0.99 250 |
|
weighted avg 0.99 0.99 0.99 250 |
|
| |
|
| 0.0 | 3.0 | 471 | 0.0177 | 0.992 | 0.992 | 0.9920 | precision recall f1-score support |
|
|
|
0 1.00 0.96 0.98 50 |
|
1 1.00 1.00 1.00 50 |
|
2 1.00 1.00 1.00 50 |
|
3 1.00 1.00 1.00 50 |
|
4 0.96 1.00 0.98 50 |
|
|
|
accuracy 0.99 250 |
|
macro avg 0.99 0.99 0.99 250 |
|
weighted avg 0.99 0.99 0.99 250 |
|
| |
|
| 0.0 | 4.0 | 628 | 0.0205 | 0.992 | 0.992 | 0.9920 | precision recall f1-score support |
|
|
|
0 1.00 0.96 0.98 50 |
|
1 1.00 1.00 1.00 50 |
|
2 1.00 1.00 1.00 50 |
|
3 1.00 1.00 1.00 50 |
|
4 0.96 1.00 0.98 50 |
|
|
|
accuracy 0.99 250 |
|
macro avg 0.99 0.99 0.99 250 |
|
weighted avg 0.99 0.99 0.99 250 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.46.0 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |