microsoft_swinv2-tiny-patch4-window8-256-batch_16_epoch_4_classes_24_final_withAug

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the bengali_food_images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2321
  • Accuracy: 0.9457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7162 0.09 100 1.4225 0.7079
1.2286 0.17 200 0.9461 0.7935
1.0323 0.26 300 0.7366 0.8356
0.8678 0.34 400 0.6211 0.8628
0.7849 0.43 500 0.5354 0.8655
0.7105 0.51 600 0.4793 0.8899
0.6198 0.6 700 0.4319 0.9090
0.6276 0.68 800 0.4022 0.8981
0.5411 0.77 900 0.3816 0.9117
0.4984 0.85 1000 0.3824 0.9022
0.5665 0.94 1100 0.3460 0.9212
0.5741 1.02 1200 0.3336 0.9158
0.4039 1.11 1300 0.3204 0.9130
0.4347 1.19 1400 0.3038 0.9307
0.3639 1.28 1500 0.2955 0.9253
0.4282 1.36 1600 0.2948 0.9293
0.4375 1.45 1700 0.2868 0.9212
0.3063 1.53 1800 0.2861 0.9334
0.3549 1.62 1900 0.2826 0.9293
0.4326 1.71 2000 0.2698 0.9348
0.3697 1.79 2100 0.2602 0.9280
0.3155 1.88 2200 0.2523 0.9361
0.3348 1.96 2300 0.2506 0.9470
0.3854 2.05 2400 0.2565 0.9321
0.3951 2.13 2500 0.2482 0.9402
0.3531 2.22 2600 0.2455 0.9402
0.3643 2.3 2700 0.2513 0.9375
0.3393 2.39 2800 0.2492 0.9429
0.3635 2.47 2900 0.2394 0.9402
0.3624 2.56 3000 0.2425 0.9389
0.3608 2.64 3100 0.2390 0.9457
0.3215 2.73 3200 0.2483 0.9321
0.2971 2.81 3300 0.2455 0.9402
0.3838 2.9 3400 0.2363 0.9470
0.3036 2.98 3500 0.2422 0.9402
0.401 3.07 3600 0.2398 0.9429
0.3458 3.15 3700 0.2517 0.9429
0.2908 3.24 3800 0.2423 0.9457
0.3016 3.32 3900 0.2402 0.9443
0.2961 3.41 4000 0.2414 0.9457
0.3822 3.5 4100 0.2413 0.9416
0.2596 3.58 4200 0.2356 0.9457
0.3064 3.67 4300 0.2324 0.9497
0.3059 3.75 4400 0.2321 0.9457
0.42 3.84 4500 0.2556 0.9402
0.2959 3.92 4600 0.2491 0.9416

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
21
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zannatul/microsoft_swinv2-tiny-patch4-window8-256-batch_16_epoch_4_classes_24_final_withAug

Finetuned
(78)
this model

Evaluation results