Zannatul's picture
🍻 cheers
ec6c855 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: >-
      microsoft_swinv2-tiny-patch4-window8-256-batch_16_epoch_4_classes_24_final_withAug
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: bengali_food_images
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9456521739130435

microsoft_swinv2-tiny-patch4-window8-256-batch_16_epoch_4_classes_24_final_withAug

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the bengali_food_images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2321
  • Accuracy: 0.9457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7162 0.09 100 1.4225 0.7079
1.2286 0.17 200 0.9461 0.7935
1.0323 0.26 300 0.7366 0.8356
0.8678 0.34 400 0.6211 0.8628
0.7849 0.43 500 0.5354 0.8655
0.7105 0.51 600 0.4793 0.8899
0.6198 0.6 700 0.4319 0.9090
0.6276 0.68 800 0.4022 0.8981
0.5411 0.77 900 0.3816 0.9117
0.4984 0.85 1000 0.3824 0.9022
0.5665 0.94 1100 0.3460 0.9212
0.5741 1.02 1200 0.3336 0.9158
0.4039 1.11 1300 0.3204 0.9130
0.4347 1.19 1400 0.3038 0.9307
0.3639 1.28 1500 0.2955 0.9253
0.4282 1.36 1600 0.2948 0.9293
0.4375 1.45 1700 0.2868 0.9212
0.3063 1.53 1800 0.2861 0.9334
0.3549 1.62 1900 0.2826 0.9293
0.4326 1.71 2000 0.2698 0.9348
0.3697 1.79 2100 0.2602 0.9280
0.3155 1.88 2200 0.2523 0.9361
0.3348 1.96 2300 0.2506 0.9470
0.3854 2.05 2400 0.2565 0.9321
0.3951 2.13 2500 0.2482 0.9402
0.3531 2.22 2600 0.2455 0.9402
0.3643 2.3 2700 0.2513 0.9375
0.3393 2.39 2800 0.2492 0.9429
0.3635 2.47 2900 0.2394 0.9402
0.3624 2.56 3000 0.2425 0.9389
0.3608 2.64 3100 0.2390 0.9457
0.3215 2.73 3200 0.2483 0.9321
0.2971 2.81 3300 0.2455 0.9402
0.3838 2.9 3400 0.2363 0.9470
0.3036 2.98 3500 0.2422 0.9402
0.401 3.07 3600 0.2398 0.9429
0.3458 3.15 3700 0.2517 0.9429
0.2908 3.24 3800 0.2423 0.9457
0.3016 3.32 3900 0.2402 0.9443
0.2961 3.41 4000 0.2414 0.9457
0.3822 3.5 4100 0.2413 0.9416
0.2596 3.58 4200 0.2356 0.9457
0.3064 3.67 4300 0.2324 0.9497
0.3059 3.75 4400 0.2321 0.9457
0.42 3.84 4500 0.2556 0.9402
0.2959 3.92 4600 0.2491 0.9416

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2