|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: Bart-CNN-dataset |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Bart-CNN-dataset |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2222 |
|
- Rouge1: 0.4398 |
|
- Rouge2: 0.1996 |
|
- Rougel: 0.2964 |
|
- Rougelsum: 0.4096 |
|
- Gen Len: 95.364 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 250 | 1.4136 | 0.4361 | 0.2058 | 0.2957 | 0.4075 | 99.678 | |
|
| 1.3139 | 2.0 | 500 | 1.4521 | 0.444 | 0.2085 | 0.3035 | 0.4138 | 90.808 | |
|
| 1.3139 | 3.0 | 750 | 1.5573 | 0.4409 | 0.2046 | 0.2945 | 0.4102 | 100.502 | |
|
| 0.7471 | 4.0 | 1000 | 1.6873 | 0.4429 | 0.205 | 0.2985 | 0.4119 | 96.34 | |
|
| 0.7471 | 5.0 | 1250 | 1.8544 | 0.4395 | 0.2016 | 0.2964 | 0.409 | 100.1 | |
|
| 0.4392 | 6.0 | 1500 | 2.0239 | 0.4407 | 0.2012 | 0.2946 | 0.4085 | 97.476 | |
|
| 0.4392 | 7.0 | 1750 | 2.1492 | 0.4409 | 0.199 | 0.2947 | 0.4101 | 94.41 | |
|
| 0.2886 | 8.0 | 2000 | 2.2222 | 0.4398 | 0.1996 | 0.2964 | 0.4096 | 95.364 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|