msi_mini / README.md
aaa12963337's picture
End of training
2db96a2
metadata
license: mit
base_model: shi-labs/nat-mini-in1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: msi_mini
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6228683254123567

msi_mini

This model is a fine-tuned version of shi-labs/nat-mini-in1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5314
  • Accuracy: 0.6229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.428 1.0 2015 0.8665 0.6079
0.3163 2.0 4031 1.0921 0.6169
0.2805 3.0 6047 1.1998 0.6082
0.2251 4.0 8063 1.2788 0.6126
0.1988 5.0 10078 1.3336 0.6121
0.1794 6.0 12094 1.3361 0.6224
0.1724 7.0 14110 1.5478 0.6097
0.1739 8.0 16126 1.6165 0.6169
0.1637 9.0 18141 1.5974 0.6134
0.1667 10.0 20150 1.5314 0.6229

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0