jonathanagustin's picture
Update metadata with huggingface_hub
ce837db
|
raw
history blame
5.34 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - squad_v2
model-index:
  - name: distilbert-finetuned-uncased-squad_v2
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: SQuAD v2
          type: squad_v2
          split: validation
        metrics:
          - type: exact
            value: 100
            name: Exact
          - type: f1
            value: 100
            name: F1
          - type: total
            value: 2
            name: Total

distilbert-finetuned-uncased-squad_v2

This model was trained from scratch on the squad_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
3.6437 0.39 100 2.1780
2.1596 0.78 200 1.6557
1.8138 1.18 300 1.5683
1.6987 1.57 400 1.5076
1.6586 1.96 500 1.5350
1.5957 1.18 600 1.4431
1.5825 1.37 700 1.4955
1.5523 1.57 800 1.4444
1.5346 1.76 900 1.3930
1.5098 1.96 1000 1.4285
1.4632 2.16 1100 1.3630
1.4468 2.35 1200 1.3710
1.4343 2.55 1300 1.3422
1.4225 2.75 1400 1.3971
1.408 2.94 1500 1.4355
1.3609 3.14 1600 1.3332
1.3398 3.33 1700 1.3792
1.3224 3.53 1800 1.4172
1.3152 3.73 1900 1.3956
1.3141 3.92 2000 1.3748
1.3085 2.06 2100 1.3949
1.3325 2.16 2200 1.4870
1.3162 2.26 2300 1.4565
1.2936 2.35 2400 1.4496
1.2648 2.45 2500 1.2868
1.2531 2.55 2600 1.5094
1.2599 2.65 2700 1.3451
1.2545 2.75 2800 1.4071
1.2461 2.84 2900 1.3378
1.2038 2.94 3000 1.2946
1.1677 3.04 3100 1.4802
1.103 3.14 3200 1.3580
1.1205 3.24 3300 1.3819
1.095 3.33 3400 1.4336
1.0896 3.43 3500 1.4963
1.0856 3.53 3600 1.3384
1.0652 3.63 3700 1.3583
1.0859 3.73 3800 1.4140
1.058 3.83 3900 1.2617
1.0724 3.92 4000 1.3552
1.0509 4.02 4100 1.2971
0.97 4.12 4200 1.3268
0.95 4.22 4300 1.3754
0.9337 4.32 4400 1.3687
0.977 4.41 4500 1.3613
0.9484 4.51 4600 1.5139
0.9739 4.61 4700 1.2861
0.955 4.71 4800 1.3667
0.9536 4.81 4900 1.3180
0.9541 4.9 5000 1.4611
0.9462 5.0 5100 1.4067
0.8728 5.1 5200 1.3490
0.8646 5.2 5300 1.4631
0.8683 5.3 5400 1.4978
0.8571 5.39 5500 1.5814
0.8475 5.49 5600 1.5535
0.8653 5.59 5700 1.4938
0.8664 5.69 5800 1.4141
0.889 5.79 5900 1.4487
0.8601 5.88 6000 1.4722
0.8645 5.98 6100 1.5843
0.785 6.08 6200 1.6028
0.7711 6.18 6300 1.6271
0.8056 6.28 6400 1.5399
0.8087 6.37 6500 1.4927
0.7859 6.47 6600 1.4677
0.7896 6.57 6700 1.4780
0.7971 6.67 6800 1.5110
0.7952 6.77 6900 1.5459
0.7971 6.87 7000 1.5282
0.7908 6.96 7100 1.4799
0.7456 7.06 7200 1.6487
0.7236 7.16 7300 1.6543
0.7484 7.26 7400 1.6202

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1