aayush14's picture
Uploaded PeptideGPT hemolytic model
78e46e3 verified
|
raw
history blame
13.7 kB
metadata
license: apache-2.0
base_model: nferruz/ProtGPT2
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: output_hemo_aug_4
    results: []

output_hemo_aug_4

This model is a fine-tuned version of nferruz/ProtGPT2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9627
  • Accuracy: 0.3978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
9.4301 1.0 6 8.6845 0.0244
8.4172 2.0 12 7.8149 0.0811
7.6869 3.0 18 7.2012 0.1554
7.1731 4.0 24 6.9139 0.1828
6.8807 5.0 30 6.6238 0.1955
6.6009 6.0 36 6.3847 0.1935
6.4347 7.0 42 6.2341 0.2063
6.2831 8.0 48 6.0964 0.2141
6.1728 9.0 54 5.9864 0.2209
6.0805 10.0 60 5.8936 0.2317
5.9959 11.0 66 5.8161 0.2405
5.925 12.0 72 5.7456 0.2385
5.8787 13.0 78 5.6646 0.2483
5.7996 14.0 84 5.5901 0.2493
5.7312 15.0 90 5.5216 0.2532
5.6751 16.0 96 5.4695 0.2590
5.6076 17.0 102 5.4216 0.2620
5.569 18.0 108 5.3735 0.2620
5.5037 19.0 114 5.3272 0.2630
5.4681 20.0 120 5.2856 0.2698
5.4225 21.0 126 5.2559 0.2717
5.3805 22.0 132 5.2126 0.2766
5.3527 23.0 138 5.1884 0.2757
5.3033 24.0 144 5.1539 0.2796
5.2635 25.0 150 5.1110 0.2854
5.2411 26.0 156 5.0882 0.2854
5.1972 27.0 162 5.0575 0.2903
5.163 28.0 168 5.0293 0.2913
5.1273 29.0 174 5.0047 0.2903
5.1032 30.0 180 4.9817 0.2952
5.0726 31.0 186 4.9583 0.2952
5.0405 32.0 192 4.9355 0.2952
5.007 33.0 198 4.9184 0.2952
4.9897 34.0 204 4.8911 0.2972
4.9416 35.0 210 4.8628 0.2972
4.9245 36.0 216 4.8499 0.2981
4.901 37.0 222 4.8263 0.3030
4.8713 38.0 228 4.8035 0.3030
4.845 39.0 234 4.7874 0.3060
4.8052 40.0 240 4.7535 0.3040
4.7786 41.0 246 4.7313 0.3060
4.7501 42.0 252 4.7175 0.3089
4.7221 43.0 258 4.6978 0.3118
4.7038 44.0 264 4.6785 0.3109
4.681 45.0 270 4.6661 0.3128
4.6566 46.0 276 4.6532 0.3157
4.632 47.0 282 4.6361 0.3157
4.618 48.0 288 4.6162 0.3196
4.5928 49.0 294 4.5987 0.3245
4.5716 50.0 300 4.5848 0.3216
4.5485 51.0 306 4.5721 0.3245
4.5324 52.0 312 4.5579 0.3196
4.5038 53.0 318 4.5423 0.3196
4.4831 54.0 324 4.5240 0.3265
4.4347 55.0 330 4.5087 0.3255
4.4218 56.0 336 4.4850 0.3255
4.3939 57.0 342 4.4791 0.3275
4.3766 58.0 348 4.4640 0.3265
4.3472 59.0 354 4.4471 0.3275
4.3241 60.0 360 4.4334 0.3275
4.2919 61.0 366 4.4296 0.3304
4.2678 62.0 372 4.4281 0.3343
4.2515 63.0 378 4.4120 0.3372
4.2244 64.0 384 4.4038 0.3343
4.2129 65.0 390 4.3826 0.3392
4.1882 66.0 396 4.3834 0.3372
4.1503 67.0 402 4.3738 0.3372
4.1398 68.0 408 4.3596 0.3372
4.115 69.0 414 4.3376 0.3412
4.1052 70.0 420 4.3330 0.3412
4.0932 71.0 426 4.3295 0.3412
4.0573 72.0 432 4.3111 0.3412
4.0449 73.0 438 4.3048 0.3441
4.0165 74.0 444 4.2936 0.3460
3.9936 75.0 450 4.2815 0.3509
3.967 76.0 456 4.2686 0.3539
3.9524 77.0 462 4.2697 0.3509
3.9287 78.0 468 4.2546 0.3529
3.9092 79.0 474 4.2484 0.3539
3.8907 80.0 480 4.2420 0.3539
3.8704 81.0 486 4.2418 0.3529
3.8499 82.0 492 4.2265 0.3548
3.8325 83.0 498 4.2089 0.3548
3.8024 84.0 504 4.2058 0.3568
3.8058 85.0 510 4.2039 0.3558
3.7888 86.0 516 4.1906 0.3578
3.7622 87.0 522 4.1792 0.3617
3.746 88.0 528 4.1819 0.3578
3.7196 89.0 534 4.1789 0.3597
3.7046 90.0 540 4.1610 0.3607
3.7078 91.0 546 4.1515 0.3607
3.6687 92.0 552 4.1752 0.3607
3.6559 93.0 558 4.1287 0.3636
3.6401 94.0 564 4.1569 0.3646
3.6281 95.0 570 4.1234 0.3627
3.5978 96.0 576 4.1270 0.3695
3.5951 97.0 582 4.1188 0.3646
3.5679 98.0 588 4.1282 0.3685
3.5618 99.0 594 4.1089 0.3646
3.5404 100.0 600 4.1090 0.3695
3.5255 101.0 606 4.1039 0.3646
3.5111 102.0 612 4.1010 0.3695
3.5015 103.0 618 4.0889 0.3705
3.493 104.0 624 4.0826 0.3705
3.5643 105.0 630 4.0915 0.3754
3.4543 106.0 636 4.0912 0.3724
3.4517 107.0 642 4.0844 0.3754
3.4387 108.0 648 4.0664 0.3754
3.4274 109.0 654 4.0885 0.3763
3.4241 110.0 660 4.0583 0.3793
3.4016 111.0 666 4.0627 0.3803
3.383 112.0 672 4.0626 0.3812
3.3709 113.0 678 4.0414 0.3871
3.3646 114.0 684 4.0562 0.3822
3.3456 115.0 690 4.0361 0.3861
3.3369 116.0 696 4.0524 0.3851
3.3136 117.0 702 4.0424 0.3842
3.307 118.0 708 4.0477 0.3861
3.2954 119.0 714 4.0287 0.3851
3.2887 120.0 720 4.0392 0.3900
3.2776 121.0 726 4.0191 0.3910
3.2527 122.0 732 4.0339 0.3910
3.259 123.0 738 4.0064 0.3930
3.2559 124.0 744 4.0285 0.3881
3.2335 125.0 750 4.0151 0.3930
3.2318 126.0 756 4.0277 0.3900
3.2266 127.0 762 3.9929 0.3978
3.2051 128.0 768 3.9945 0.3978
3.2009 129.0 774 4.0291 0.3930
3.1791 130.0 780 3.9956 0.3930
3.1759 131.0 786 4.0012 0.3969
3.1622 132.0 792 4.0107 0.3949
3.1559 133.0 798 4.0090 0.3939
3.1521 134.0 804 4.0028 0.3910
3.1353 135.0 810 4.0033 0.3939
3.1427 136.0 816 3.9995 0.3939
3.1276 137.0 822 3.9963 0.3920
3.1228 138.0 828 3.9996 0.3978
3.1039 139.0 834 3.9928 0.3988
3.097 140.0 840 3.9969 0.3969
3.083 141.0 846 3.9918 0.3949
3.0844 142.0 852 3.9900 0.3969
3.077 143.0 858 3.9812 0.3959
3.0601 144.0 864 3.9948 0.3959
3.0669 145.0 870 3.9938 0.3959
3.0515 146.0 876 3.9895 0.3978
3.0405 147.0 882 3.9803 0.3988
3.029 148.0 888 3.9856 0.3969
3.0342 149.0 894 3.9828 0.3969
3.0137 150.0 900 3.9977 0.3978
3.0277 151.0 906 3.9793 0.3998
3.0005 152.0 912 3.9779 0.3998
3.0027 153.0 918 3.9891 0.3988
3.0034 154.0 924 3.9687 0.4008
2.9853 155.0 930 3.9887 0.3978
2.9947 156.0 936 3.9860 0.4027
2.9768 157.0 942 3.9900 0.4027
2.9752 158.0 948 3.9993 0.3988
2.9773 159.0 954 3.9694 0.4018
2.9662 160.0 960 3.9924 0.3998
2.9661 161.0 966 4.0089 0.3988
2.9488 162.0 972 3.9749 0.3988
2.9487 163.0 978 3.9932 0.3978
2.9482 164.0 984 3.9987 0.3988
2.9624 165.0 990 3.9627 0.3978
2.9524 166.0 996 3.9791 0.4008
2.9357 167.0 1002 3.9969 0.3998
2.9323 168.0 1008 3.9854 0.4008
2.9334 169.0 1014 3.9778 0.4008
2.9228 170.0 1020 3.9859 0.4027
2.9305 171.0 1026 3.9821 0.4037
2.9239 172.0 1032 3.9876 0.4066
2.9181 173.0 1038 3.9792 0.4057
2.9162 174.0 1044 3.9731 0.4037
2.9171 175.0 1050 3.9796 0.4066
2.9132 176.0 1056 3.9914 0.4047
2.9168 177.0 1062 3.9826 0.4047
2.8974 178.0 1068 3.9753 0.4057
2.8954 179.0 1074 3.9766 0.4057
2.9003 180.0 1080 3.9865 0.4027
2.9012 181.0 1086 3.9835 0.4047
2.8994 182.0 1092 3.9802 0.4047
2.8918 183.0 1098 3.9811 0.4066
2.8893 184.0 1104 3.9810 0.4057
2.8865 185.0 1110 3.9852 0.4076
2.8784 186.0 1116 3.9805 0.4057
2.8875 187.0 1122 3.9781 0.4066
2.8948 188.0 1128 3.9831 0.4057
2.8927 189.0 1134 3.9837 0.4066
2.8739 190.0 1140 3.9822 0.4057
2.8919 191.0 1146 3.9792 0.4066
2.8713 192.0 1152 3.9800 0.4057
2.8798 193.0 1158 3.9854 0.4047
2.8835 194.0 1164 3.9845 0.4057
2.878 195.0 1170 3.9820 0.4057
2.8931 196.0 1176 3.9816 0.4057
2.8662 197.0 1182 3.9830 0.4057
2.8734 198.0 1188 3.9841 0.4057
2.8825 199.0 1194 3.9830 0.4057
2.8825 200.0 1200 3.9827 0.4057

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1