|
---
|
|
license: apache-2.0
|
|
base_model: openai/whisper-base.en
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: abbenedekwhisper-base.en-finetuning2-D3K
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# abbenedekwhisper-base.en-finetuning2-D3K
|
|
|
|
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 4.7781
|
|
- Cer: 64.7190
|
|
- Wer: 119.5364
|
|
- Ser: 100.0
|
|
- Cer Clean: 3.5058
|
|
- Wer Clean: 6.2914
|
|
- Ser Clean: 7.0175
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-08
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 64
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 10
|
|
- training_steps: 1000
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean |
|
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|
|
|
| 7.5369 | 0.53 | 100 | 6.7220 | 63.7730 | 128.1457 | 100.0 | 4.1180 | 6.9536 | 8.7719 |
|
|
| 7.0363 | 1.06 | 200 | 6.1829 | 65.0529 | 123.8411 | 100.0 | 3.2832 | 5.6291 | 7.0175 |
|
|
| 6.417 | 1.6 | 300 | 5.7959 | 64.1625 | 121.1921 | 100.0 | 3.2832 | 5.6291 | 7.0175 |
|
|
| 6.0146 | 2.13 | 400 | 5.4587 | 64.7746 | 121.8543 | 100.0 | 3.6728 | 6.6225 | 7.8947 |
|
|
| 5.6687 | 2.66 | 500 | 5.2287 | 65.3311 | 120.5298 | 100.0 | 3.7284 | 6.6225 | 7.8947 |
|
|
| 5.3902 | 3.19 | 600 | 5.0691 | 65.1085 | 121.1921 | 100.0 | 3.5615 | 6.2914 | 7.0175 |
|
|
| 5.2512 | 3.72 | 700 | 4.9358 | 64.7190 | 120.1987 | 100.0 | 3.2832 | 5.9603 | 6.1404 |
|
|
| 5.1258 | 4.26 | 800 | 4.8451 | 64.7190 | 119.5364 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
|
|
| 5.0472 | 4.79 | 900 | 4.7950 | 64.7190 | 119.5364 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
|
|
| 4.9871 | 5.32 | 1000 | 4.7781 | 64.7190 | 119.5364 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.39.3
|
|
- Pytorch 2.2.2+cu121
|
|
- Datasets 2.14.5
|
|
- Tokenizers 0.15.2
|
|
|