finetuned / README.md
abbenedek's picture
End of training
1de23f0 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-base-finetuned2222222222222222222222222222222
    results: []

whisper-base-finetuned2222222222222222222222222222222

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0018
  • Wer: 0.125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.7056 0.8 20 6.4502 16.25
4.7836 1.6 40 2.9149 10.375
1.8399 2.4 60 0.8254 7.875
0.3132 3.2 80 0.0852 3.875
0.0335 4.0 100 0.0190 1.7500
0.0067 4.8 120 0.0080 1.0
0.0032 5.6 140 0.0050 0.375
0.0021 6.4 160 0.0039 0.125
0.0017 7.2 180 0.0034 0.125
0.0015 8.0 200 0.0030 0.125
0.0013 8.8 220 0.0027 0.125
0.0012 9.6 240 0.0025 0.125
0.0011 10.4 260 0.0023 0.125
0.001 11.2 280 0.0021 0.125
0.0009 12.0 300 0.0020 0.125
0.0009 12.8 320 0.0020 0.125
0.0009 13.6 340 0.0019 0.125
0.0008 14.4 360 0.0018 0.125
0.0009 15.2 380 0.0018 0.125
0.0008 16.0 400 0.0018 0.125

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.2