metadata
language:
- yo
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5019
- loss:TripletLoss
base_model: Davlan/bert-base-multilingual-cased-finetuned-yoruba
datasets:
- embedding-data/QQP_triplets
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: Bawo ni eniyan lasan ṣe le ṣe agbaye ni aye ti o dara julọ?
sentences:
- Ewo ni fiimu ti o dara julọ ti agbaye?
- >-
Bawo ni a ṣe le ṣe agbaye ni aye ti o dara julọ fun gbogbo ati fun iran
iwaju lati wa?
- Njẹ aiye yii dara julọ tabi buru?
- source_sentence: Ni Pokemon ati tẹmpili ti okun, kilode ti o yanilenu Manicy?
sentences:
- Kini idi ti Manafy ọmọ-ọwọ ni Pokémon ger ati tẹmpili ti okun?
- Bawo ni awọn ibeere mi ṣe wa nigbagbogbo nigbagbogbo lori Quora?
- Ṣe "Pokémon ti o wuyi ati tẹmpili ti Okun" ka akọku?
- source_sentence: Kini itumo igbesi aye yii?
sentences:
- Kini "Gbe igbesi aye rẹ" tumọ si?
- Kini o ro pe o jẹ itumọ ti igbesi aye?
- >-
Nitorinaa bawo ni MO ṣe le gba meth lati fulu jade ninu ara ni awọn
wakati 2 ṣaaju idanwo togbo kan?
- source_sentence: >-
Nibo ni MO le gba ọpọlọpọ awọn aso deede, awọn aṣọ alekun & awọn aṣọ irọlẹ
ni goolu ni eti okun?
sentences:
- >-
Nibo ni MO le gba ọpọlọpọ awọn awọ ati titobi fun awọn aṣọ awọn alagbaje
ni Gold Coast?
- >-
Kini yoo ṣẹlẹ ti o ba jẹ ki o dina nkan bi Facebook tabi Google ni
isansa ti iṣan neta?
- Nibo ni MO le gba ikojọpọ ti o lẹwa fun awọn aṣọ igbeyawo ni Sydney?
- source_sentence: Kini o yẹ ki Ilu India ṣe lori ikọlu UI?
sentences:
- Bawo ni MO ṣe sọ Gẹẹsi leta ni ifọrọwanilẹnuwo kan?
- >-
Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ
ohun itiju fun India ti ko ba kọlu Pakistan?
- Bawo ni India le dahun si ikọlu ẹru UI?
pipeline_tag: sentence-similarity
model-index:
- name: >-
SentenceTransformer based on
Davlan/bert-base-multilingual-cased-finetuned-yoruba
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.865
name: Cosine Accuracy
- type: dot_accuracy
value: 0.135
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.868
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.868
name: Euclidean Accuracy
- type: max_accuracy
value: 0.868
name: Max Accuracy
SentenceTransformer based on Davlan/bert-base-multilingual-cased-finetuned-yoruba
This is a sentence-transformers model finetuned from Davlan/bert-base-multilingual-cased-finetuned-yoruba. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Davlan/bert-base-multilingual-cased-finetuned-yoruba
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adejumobi/bert-base-multilingual-cased-finetuned-yoruba-IR")
# Run inference
sentences = [
'Kini o yẹ ki Ilu India ṣe lori ikọlu UI?',
'Bawo ni India le dahun si ikọlu ẹru UI?',
'Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun itiju fun India ti ko ba kọlu Pakistan?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.865 |
dot_accuracy | 0.135 |
manhattan_accuracy | 0.868 |
euclidean_accuracy | 0.868 |
max_accuracy | 0.868 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,019 training samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 24.62 tokens
- max: 74 tokens
- min: 6 tokens
- mean: 24.14 tokens
- max: 79 tokens
- min: 4 tokens
- mean: 25.71 tokens
- max: 98 tokens
- Samples:
query pos neg Kini idi ti Ilu India ṣe a ko ni ọkan lori ijiroro oloselu kan bi ni AMẸRIKA?
Kini idi ti a ko le ni ijiroro gbangba laarin awọn oloselu ni India bi ọkan ninu wa?
Njẹ eniyan le da quo duro de India Pakistan ariyanjiyan?A ni aisan ati ti o ri eyi lojoojumọ ni olopo?
Kini OnePlus Ọkan?
Bawo ni OnePlus kan?
Kini idi ti OnePlus Ọkan dara?
Ṣe ọkan wa ṣe iṣakoso awọn ẹdun wa?
Bawo ni ọlọgbọn ati awọn eniyan aṣeyọri ṣe ṣakoso awọn ẹdun wọn?
Bawo ni MO ṣe le ṣakoso awọn ẹdun mi rere fun awọn eniyan ti Mo nifẹ ṣugbọn wọn ko bikita nipa mi?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 6 tokens
- mean: 24.32 tokens
- max: 94 tokens
- min: 6 tokens
- mean: 24.06 tokens
- max: 115 tokens
- min: 6 tokens
- mean: 25.58 tokens
- max: 121 tokens
- Samples:
query pos neg Bawo ni o jẹ ọjọ ebi?
Bawo ni o jẹ ọsan
Njẹ NEBM lueMo ṣẹlẹ lati wa awọn ifiweranṣẹ ti o sọ pe o jẹ iro ati pe ko ni itter
Kini awọn ohun elo akọkọ ti kọnputa kan?
Kini diẹ ninu awọn ẹya akọkọ ti kọnputa kan?Awọn iṣẹ wo ni wọn nṣe iranṣẹ?
Kini awọn eto kọmputa?Kini awọn iṣẹ ti awọn eto kọnputa?
Ṣe o le faffiti Artists fun sokiri Graffiti ni Rockdale County, GA?
Ṣe o le fun awọn ojukokoro fun fun sokiri Graffiti ni Cockdale County, Georgia?
Kini idi ti Graffiti jẹ arufin?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 3learning_rate
: 1e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 3per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cosine_accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.827 |
0.2387 | 100 | 4.247 | 3.6056 | 0.815 |
0.4773 | 200 | 3.3576 | 2.7548 | 0.809 |
0.7160 | 300 | 2.931 | 2.3805 | 0.843 |
0.9547 | 400 | 2.4476 | 2.1895 | 0.858 |
1.1933 | 500 | 2.5839 | 2.1148 | 0.854 |
1.4320 | 600 | 2.0645 | 2.0497 | 0.855 |
1.6706 | 700 | 1.8386 | 2.0328 | 0.847 |
1.9093 | 800 | 1.5527 | 1.9380 | 0.857 |
2.1480 | 900 | 1.7298 | 1.8999 | 0.861 |
2.3866 | 1000 | 1.4375 | 1.8744 | 0.855 |
2.6253 | 1100 | 1.1605 | 1.8761 | 0.861 |
2.8640 | 1200 | 1.0601 | 1.8658 | 0.862 |
3.1026 | 1300 | 1.1019 | 1.8181 | 0.861 |
3.3413 | 1400 | 1.052 | 1.8088 | 0.854 |
3.5800 | 1500 | 0.8807 | 1.7937 | 0.862 |
3.8186 | 1600 | 0.7877 | 1.7963 | 0.862 |
4.0573 | 1700 | 0.7613 | 1.7869 | 0.868 |
4.2959 | 1800 | 0.8018 | 1.7696 | 0.867 |
4.5346 | 1900 | 0.6717 | 1.7815 | 0.865 |
4.7733 | 2000 | 0.6603 | 1.7776 | 0.865 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}