|
--- |
|
language: |
|
- yo |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:5019 |
|
- loss:TripletLoss |
|
base_model: Davlan/bert-base-multilingual-cased-finetuned-yoruba |
|
datasets: |
|
- embedding-data/QQP_triplets |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
widget: |
|
- source_sentence: Bawo ni eniyan lasan ṣe le ṣe agbaye ni aye ti o dara julọ? |
|
sentences: |
|
- Ewo ni fiimu ti o dara julọ ti agbaye? |
|
- >- |
|
Bawo ni a ṣe le ṣe agbaye ni aye ti o dara julọ fun gbogbo ati fun iran |
|
iwaju lati wa? |
|
- Njẹ aiye yii dara julọ tabi buru? |
|
- source_sentence: Ni Pokemon ati tẹmpili ti okun, kilode ti o yanilenu Manicy? |
|
sentences: |
|
- Kini idi ti Manafy ọmọ-ọwọ ni Pokémon ger ati tẹmpili ti okun? |
|
- Bawo ni awọn ibeere mi ṣe wa nigbagbogbo nigbagbogbo lori Quora? |
|
- Ṣe "Pokémon ti o wuyi ati tẹmpili ti Okun" ka akọku? |
|
- source_sentence: Kini itumo igbesi aye yii? |
|
sentences: |
|
- Kini "Gbe igbesi aye rẹ" tumọ si? |
|
- Kini o ro pe o jẹ itumọ ti igbesi aye? |
|
- >- |
|
Nitorinaa bawo ni MO ṣe le gba meth lati fulu jade ninu ara ni awọn wakati 2 |
|
ṣaaju idanwo togbo kan? |
|
- source_sentence: >- |
|
Nibo ni MO le gba ọpọlọpọ awọn aso deede, awọn aṣọ alekun & awọn aṣọ irọlẹ |
|
ni goolu ni eti okun? |
|
sentences: |
|
- >- |
|
Nibo ni MO le gba ọpọlọpọ awọn awọ ati titobi fun awọn aṣọ awọn alagbaje ni |
|
Gold Coast? |
|
- >- |
|
Kini yoo ṣẹlẹ ti o ba jẹ ki o dina nkan bi Facebook tabi Google ni isansa ti |
|
iṣan neta? |
|
- Nibo ni MO le gba ikojọpọ ti o lẹwa fun awọn aṣọ igbeyawo ni Sydney? |
|
- source_sentence: Kini o yẹ ki Ilu India ṣe lori ikọlu UI? |
|
sentences: |
|
- Bawo ni MO ṣe sọ Gẹẹsi leta ni ifọrọwanilẹnuwo kan? |
|
- >- |
|
Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ |
|
ohun itiju fun India ti ko ba kọlu Pakistan? |
|
- Bawo ni India le dahun si ikọlu ẹru UI? |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: >- |
|
SentenceTransformer based on |
|
Davlan/bert-base-multilingual-cased-finetuned-yoruba |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.865 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.135 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.868 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.868 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.868 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on Davlan/bert-base-multilingual-cased-finetuned-yoruba |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Davlan/bert-base-multilingual-cased-finetuned-yoruba](https://huggingface.co/Davlan/bert-base-multilingual-cased-finetuned-yoruba). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Davlan/bert-base-multilingual-cased-finetuned-yoruba](https://huggingface.co/Davlan/bert-base-multilingual-cased-finetuned-yoruba) <!-- at revision 000f80b4509f73bca9a33f9db0573d6f67396a12 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("adejumobi/bert-base-multilingual-cased-finetuned-yoruba-IR") |
|
# Run inference |
|
sentences = [ |
|
'Kini o yẹ ki Ilu India ṣe lori ikọlu UI?', |
|
'Bawo ni India le dahun si ikọlu ẹru UI?', |
|
'Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun itiju fun India ti ko ba kọlu Pakistan?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| **cosine_accuracy** | **0.865** | |
|
| dot_accuracy | 0.135 | |
|
| manhattan_accuracy | 0.868 | |
|
| euclidean_accuracy | 0.868 | |
|
| max_accuracy | 0.868 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 5,019 training samples |
|
* Columns: <code>query</code>, <code>pos</code>, and <code>neg</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | pos | neg | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 24.62 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.14 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.71 tokens</li><li>max: 98 tokens</li></ul> | |
|
* Samples: |
|
| query | pos | neg | |
|
|:-------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| |
|
| <code>Kini idi ti Ilu India ṣe a ko ni ọkan lori ijiroro oloselu kan bi ni AMẸRIKA?</code> | <code>Kini idi ti a ko le ni ijiroro gbangba laarin awọn oloselu ni India bi ọkan ninu wa?</code> | <code>Njẹ eniyan le da quo duro de India Pakistan ariyanjiyan?A ni aisan ati ti o ri eyi lojoojumọ ni olopo?</code> | |
|
| <code>Kini OnePlus Ọkan?</code> | <code>Bawo ni OnePlus kan?</code> | <code>Kini idi ti OnePlus Ọkan dara?</code> | |
|
| <code>Ṣe ọkan wa ṣe iṣakoso awọn ẹdun wa?</code> | <code>Bawo ni ọlọgbọn ati awọn eniyan aṣeyọri ṣe ṣakoso awọn ẹdun wọn?</code> | <code>Bawo ni MO ṣe le ṣakoso awọn ẹdun mi rere fun awọn eniyan ti Mo nifẹ ṣugbọn wọn ko bikita nipa mi?</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>query</code>, <code>pos</code>, and <code>neg</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | pos | neg | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 24.32 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 24.06 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 25.58 tokens</li><li>max: 121 tokens</li></ul> | |
|
* Samples: |
|
| query | pos | neg | |
|
|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------| |
|
| <code>Bawo ni o jẹ ọjọ ebi?</code> | <code>Bawo ni o jẹ ọsan</code> | <code>Njẹ NEBM lueMo ṣẹlẹ lati wa awọn ifiweranṣẹ ti o sọ pe o jẹ iro ati pe ko ni itter</code> | |
|
| <code>Kini awọn ohun elo akọkọ ti kọnputa kan?</code> | <code>Kini diẹ ninu awọn ẹya akọkọ ti kọnputa kan?Awọn iṣẹ wo ni wọn nṣe iranṣẹ?</code> | <code>Kini awọn eto kọmputa?Kini awọn iṣẹ ti awọn eto kọnputa?</code> | |
|
| <code>Ṣe o le faffiti Artists fun sokiri Graffiti ni Rockdale County, GA?</code> | <code>Ṣe o le fun awọn ojukokoro fun fun sokiri Graffiti ni Cockdale County, Georgia?</code> | <code>Kini idi ti Graffiti jẹ arufin?</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 12 |
|
- `per_device_eval_batch_size`: 3 |
|
- `learning_rate`: 1e-05 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 12 |
|
- `per_device_eval_batch_size`: 3 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | cosine_accuracy | |
|
|:------:|:----:|:-------------:|:------:|:---------------:| |
|
| 0 | 0 | - | - | 0.827 | |
|
| 0.2387 | 100 | 4.247 | 3.6056 | 0.815 | |
|
| 0.4773 | 200 | 3.3576 | 2.7548 | 0.809 | |
|
| 0.7160 | 300 | 2.931 | 2.3805 | 0.843 | |
|
| 0.9547 | 400 | 2.4476 | 2.1895 | 0.858 | |
|
| 1.1933 | 500 | 2.5839 | 2.1148 | 0.854 | |
|
| 1.4320 | 600 | 2.0645 | 2.0497 | 0.855 | |
|
| 1.6706 | 700 | 1.8386 | 2.0328 | 0.847 | |
|
| 1.9093 | 800 | 1.5527 | 1.9380 | 0.857 | |
|
| 2.1480 | 900 | 1.7298 | 1.8999 | 0.861 | |
|
| 2.3866 | 1000 | 1.4375 | 1.8744 | 0.855 | |
|
| 2.6253 | 1100 | 1.1605 | 1.8761 | 0.861 | |
|
| 2.8640 | 1200 | 1.0601 | 1.8658 | 0.862 | |
|
| 3.1026 | 1300 | 1.1019 | 1.8181 | 0.861 | |
|
| 3.3413 | 1400 | 1.052 | 1.8088 | 0.854 | |
|
| 3.5800 | 1500 | 0.8807 | 1.7937 | 0.862 | |
|
| 3.8186 | 1600 | 0.7877 | 1.7963 | 0.862 | |
|
| 4.0573 | 1700 | 0.7613 | 1.7869 | 0.868 | |
|
| 4.2959 | 1800 | 0.8018 | 1.7696 | 0.867 | |
|
| 4.5346 | 1900 | 0.6717 | 1.7815 | 0.865 | |
|
| 4.7733 | 2000 | 0.6603 | 1.7776 | 0.865 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |