|
--- |
|
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Aquest text és Varis |
|
- text: Aquest text és Mobiliari Urbà |
|
- text: Aquest text és Velocitat |
|
- text: Aquest text és Parcs i Jardins |
|
- text: Aquest text és Enllumenat |
|
inference: true |
|
--- |
|
|
|
# SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Number of Classes:** 14 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'Aquest text és Arbrat'</li><li>'Aquest text és Arbrat'</li><li>'Aquest text és Arbrat'</li></ul> | |
|
| 1 | <ul><li>'Aquest text és Circulació'</li><li>'Aquest text és Circulació'</li><li>'Aquest text és Circulació'</li></ul> | |
|
| 2 | <ul><li>'Aquest text és Comentaris'</li><li>'Aquest text és Comentaris'</li><li>'Aquest text és Comentaris'</li></ul> | |
|
| 3 | <ul><li>'Aquest text és Enllumenat'</li><li>'Aquest text és Enllumenat'</li><li>'Aquest text és Enllumenat'</li></ul> | |
|
| 4 | <ul><li>'Aquest text és Informació'</li><li>'Aquest text és Informació'</li><li>'Aquest text és Informació'</li></ul> | |
|
| 5 | <ul><li>'Aquest text és Manteniment'</li><li>'Aquest text és Manteniment'</li><li>'Aquest text és Manteniment'</li></ul> | |
|
| 6 | <ul><li>'Aquest text és Mobiliari Urbà'</li><li>'Aquest text és Mobiliari Urbà'</li><li>'Aquest text és Mobiliari Urbà'</li></ul> | |
|
| 7 | <ul><li>'Aquest text és Neteja'</li><li>'Aquest text és Neteja'</li><li>'Aquest text és Neteja'</li></ul> | |
|
| 8 | <ul><li>'Aquest text és Parcs i Jardins'</li><li>'Aquest text és Parcs i Jardins'</li><li>'Aquest text és Parcs i Jardins'</li></ul> | |
|
| 9 | <ul><li>'Aquest text és Senyalització'</li><li>'Aquest text és Senyalització'</li><li>'Aquest text és Senyalització'</li></ul> | |
|
| 10 | <ul><li>'Aquest text és Sorolls'</li><li>'Aquest text és Sorolls'</li><li>'Aquest text és Sorolls'</li></ul> | |
|
| 11 | <ul><li>'Aquest text és Suggeriments'</li><li>'Aquest text és Suggeriments'</li><li>'Aquest text és Suggeriments'</li></ul> | |
|
| 12 | <ul><li>'Aquest text és Varis'</li><li>'Aquest text és Varis'</li><li>'Aquest text és Varis'</li></ul> | |
|
| 13 | <ul><li>'Aquest text és Velocitat'</li><li>'Aquest text és Velocitat'</li><li>'Aquest text és Velocitat'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("adriansanz/setfitemotions") |
|
# Run inference |
|
preds = model("Aquest text és Varis") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 4.2143 | 6 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 10 | |
|
| 1 | 10 | |
|
| 2 | 10 | |
|
| 3 | 10 | |
|
| 4 | 10 | |
|
| 5 | 10 | |
|
| 6 | 10 | |
|
| 7 | 10 | |
|
| 8 | 10 | |
|
| 9 | 10 | |
|
| 10 | 10 | |
|
| 11 | 10 | |
|
| 12 | 10 | |
|
| 13 | 10 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (3, 3) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0009 | 1 | 0.2021 | - | |
|
| 0.0439 | 50 | 0.0263 | - | |
|
| 0.0879 | 100 | 0.0032 | - | |
|
| 0.1318 | 150 | 0.0015 | - | |
|
| 0.1757 | 200 | 0.0012 | - | |
|
| 0.2197 | 250 | 0.0007 | - | |
|
| 0.2636 | 300 | 0.0008 | - | |
|
| 0.3076 | 350 | 0.0006 | - | |
|
| 0.3515 | 400 | 0.0003 | - | |
|
| 0.3954 | 450 | 0.0003 | - | |
|
| 0.4394 | 500 | 0.0004 | - | |
|
| 0.4833 | 550 | 0.0005 | - | |
|
| 0.5272 | 600 | 0.0004 | - | |
|
| 0.5712 | 650 | 0.0005 | - | |
|
| 0.6151 | 700 | 0.0005 | - | |
|
| 0.6591 | 750 | 0.0002 | - | |
|
| 0.7030 | 800 | 0.0001 | - | |
|
| 0.7469 | 850 | 0.0004 | - | |
|
| 0.7909 | 900 | 0.0002 | - | |
|
| 0.8348 | 950 | 0.0003 | - | |
|
| 0.8787 | 1000 | 0.0002 | - | |
|
| 0.9227 | 1050 | 0.0002 | - | |
|
| 0.9666 | 1100 | 0.0003 | - | |
|
| 1.0105 | 1150 | 0.0002 | - | |
|
| 1.0545 | 1200 | 0.0002 | - | |
|
| 1.0984 | 1250 | 0.0002 | - | |
|
| 1.1424 | 1300 | 0.0003 | - | |
|
| 1.1863 | 1350 | 0.0003 | - | |
|
| 1.2302 | 1400 | 0.0001 | - | |
|
| 1.2742 | 1450 | 0.0002 | - | |
|
| 1.3181 | 1500 | 0.0001 | - | |
|
| 1.3620 | 1550 | 0.0001 | - | |
|
| 1.4060 | 1600 | 0.0003 | - | |
|
| 1.4499 | 1650 | 0.0001 | - | |
|
| 1.4938 | 1700 | 0.0001 | - | |
|
| 1.5378 | 1750 | 0.0001 | - | |
|
| 1.5817 | 1800 | 0.0001 | - | |
|
| 1.6257 | 1850 | 0.0001 | - | |
|
| 1.6696 | 1900 | 0.0001 | - | |
|
| 1.7135 | 1950 | 0.0001 | - | |
|
| 1.7575 | 2000 | 0.0002 | - | |
|
| 1.8014 | 2050 | 0.0001 | - | |
|
| 1.8453 | 2100 | 0.0001 | - | |
|
| 1.8893 | 2150 | 0.0002 | - | |
|
| 1.9332 | 2200 | 0.0001 | - | |
|
| 1.9772 | 2250 | 0.0002 | - | |
|
| 2.0211 | 2300 | 0.0001 | - | |
|
| 2.0650 | 2350 | 0.0001 | - | |
|
| 2.1090 | 2400 | 0.0001 | - | |
|
| 2.1529 | 2450 | 0.0001 | - | |
|
| 2.1968 | 2500 | 0.0001 | - | |
|
| 2.2408 | 2550 | 0.0001 | - | |
|
| 2.2847 | 2600 | 0.0 | - | |
|
| 2.3286 | 2650 | 0.0001 | - | |
|
| 2.3726 | 2700 | 0.0001 | - | |
|
| 2.4165 | 2750 | 0.0001 | - | |
|
| 2.4605 | 2800 | 0.0001 | - | |
|
| 2.5044 | 2850 | 0.0001 | - | |
|
| 2.5483 | 2900 | 0.0001 | - | |
|
| 2.5923 | 2950 | 0.0001 | - | |
|
| 2.6362 | 3000 | 0.0001 | - | |
|
| 2.6801 | 3050 | 0.0001 | - | |
|
| 2.7241 | 3100 | 0.0001 | - | |
|
| 2.7680 | 3150 | 0.0001 | - | |
|
| 2.8120 | 3200 | 0.0001 | - | |
|
| 2.8559 | 3250 | 0.0001 | - | |
|
| 2.8998 | 3300 | 0.0001 | - | |
|
| 2.9438 | 3350 | 0.0001 | - | |
|
| 2.9877 | 3400 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.3.1+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |