|
---
|
|
library_name: transformers
|
|
license: other
|
|
base_model: nvidia/mit-b0
|
|
tags:
|
|
- vision
|
|
- image-segmentation
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: segformer-b0-finetuned-segments-sidewalk-oct-22
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# segformer-b0-finetuned-segments-sidewalk-oct-22
|
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the adsjnajefwnb/di dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.1425
|
|
- Mean Iou: 0.4608
|
|
- Mean Accuracy: 0.6144
|
|
- Overall Accuracy: 0.9524
|
|
- Accuracy Unlabeled: nan
|
|
- Accuracy Anqvan: nan
|
|
- Accuracy Baohuxiang: nan
|
|
- Accuracy Biaozhi: nan
|
|
- Accuracy Dianlan: 0.9591
|
|
- Accuracy Miehuoqi: 0.8841
|
|
- Accuracy Zhaoming: 0.0
|
|
- Iou Unlabeled: 0.0
|
|
- Iou Anqvan: nan
|
|
- Iou Baohuxiang: nan
|
|
- Iou Biaozhi: nan
|
|
- Iou Dianlan: 0.9591
|
|
- Iou Miehuoqi: 0.8841
|
|
- Iou Zhaoming: 0.0
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 6e-05
|
|
- train_batch_size: 2
|
|
- eval_batch_size: 2
|
|
- seed: 42
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 50
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Anqvan | Accuracy Baohuxiang | Accuracy Biaozhi | Accuracy Dianlan | Accuracy Miehuoqi | Accuracy Zhaoming | Iou Unlabeled | Iou Anqvan | Iou Baohuxiang | Iou Biaozhi | Iou Dianlan | Iou Miehuoqi | Iou Zhaoming |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:----------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:----------:|:--------------:|:-----------:|:-----------:|:------------:|:------------:|
|
|
| 1.5348 | 10.0 | 20 | 1.8080 | 0.3181 | 0.6370 | 0.9720 | nan | nan | nan | nan | 0.9776 | 0.9334 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.9759 | 0.9328 | 0.0 |
|
|
| 1.5003 | 20.0 | 40 | 1.5287 | 0.3865 | 0.6442 | 0.9726 | nan | nan | nan | nan | 0.9773 | 0.9552 | 0.0 | 0.0 | nan | nan | 0.0 | 0.9773 | 0.9552 | 0.0 |
|
|
| 1.4909 | 30.0 | 60 | 1.2543 | 0.4770 | 0.6359 | 0.9695 | nan | nan | nan | nan | 0.9750 | 0.9328 | 0.0 | 0.0 | nan | nan | nan | 0.9750 | 0.9328 | 0.0 |
|
|
| 1.331 | 40.0 | 80 | 1.1463 | 0.4671 | 0.6229 | 0.9613 | nan | nan | nan | nan | 0.9677 | 0.9009 | 0.0 | 0.0 | nan | nan | nan | 0.9677 | 0.9009 | 0.0 |
|
|
| 1.0843 | 50.0 | 100 | 1.1425 | 0.4608 | 0.6144 | 0.9524 | nan | nan | nan | nan | 0.9591 | 0.8841 | 0.0 | 0.0 | nan | nan | nan | 0.9591 | 0.8841 | 0.0 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.46.3
|
|
- Pytorch 1.12.1+cu113
|
|
- Datasets 3.1.0
|
|
- Tokenizers 0.20.3
|
|
|