|
--- |
|
base_model: malhajar/phi-2-meditron |
|
datasets: |
|
- epfl-llm/guidelines |
|
inference: false |
|
language: |
|
- en |
|
license: ms-pl |
|
model_creator: malhajar |
|
model_name: phi-2-meditron |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- Medicine |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# malhajar/phi-2-meditron-GGUF |
|
|
|
Quantized GGUF model files for [phi-2-meditron](https://huggingface.co/malhajar/phi-2-meditron) from [malhajar](https://huggingface.co/malhajar) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [phi-2-meditron.fp16.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.fp16.gguf) | fp16 | 5.56 GB | |
|
| [phi-2-meditron.q2_k.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q2_k.gguf) | q2_k | 1.17 GB | |
|
| [phi-2-meditron.q3_k_m.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q3_k_m.gguf) | q3_k_m | 1.48 GB | |
|
| [phi-2-meditron.q4_k_m.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q4_k_m.gguf) | q4_k_m | 1.79 GB | |
|
| [phi-2-meditron.q5_k_m.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q5_k_m.gguf) | q5_k_m | 2.07 GB | |
|
| [phi-2-meditron.q6_k.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q6_k.gguf) | q6_k | 2.29 GB | |
|
| [phi-2-meditron.q8_0.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q8_0.gguf) | q8_0 | 2.96 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
phi-2-meditron is a finetuned version of [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b) using SFT Training on the Meditron Dataset. |
|
This model can answer information about different excplicit ideas in medicine (see [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b) for more info) |
|
|
|
### Model Description |
|
|
|
- **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) |
|
- **Language(s) (NLP):** English |
|
- **Finetuned from model:** [`microsoft/phi-2`](https://huggingface.co/microsoft/phi-2) |
|
|
|
### Prompt Template |
|
``` |
|
### Instruction: |
|
|
|
<prompt> (without the <>) |
|
|
|
### Response: |
|
``` |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code sample provided in the original post to interact with the model. |
|
```python |
|
from transformers import AutoTokenizer,AutoModelForCausalLM |
|
|
|
model_id = "malhajar/phi-2-meditron" |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
trust_remote_code= True, |
|
revision="main") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
question: "what is tract infection?" |
|
# For generating a response |
|
prompt = ''' |
|
### Instruction: |
|
{question} |
|
|
|
### Response:''' |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True, |
|
top_p=0.95) |
|
response = tokenizer.decode(output[0]) |
|
|
|
print(response) |
|
``` |