|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 274.81 +/- 20.36 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
TODO: Add your code |
|
|
|
|
|
```python |
|
from huggingface_hub import notebook_login |
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.env_util import make_vec_env |
|
|
|
# Create the environment |
|
env = make_vec_env('LunarLander-v2', n_envs=16) |
|
|
|
model = PPO( |
|
policy = 'MlpPolicy', # The policy to be optimized |
|
env = env, # The environment in which the agent will act |
|
n_steps = 2048, # The number of steps to run for each environment per update |
|
batch_size = 64, # Minibatch size |
|
n_epochs = 10, # Number of epoch when optimizing the surrogate loss |
|
gamma = 0.999, # discount factor used to weigh future rewards in the total reward calculation |
|
gae_lambda = 0.98, # parameter used in the Generalized Advantage Estimation (GAE) algorithm |
|
ent_coef = 0.01, # Entropy coefficient for the loss calculation |
|
verbose=0) # Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for debug messages |
|
|
|
# Train it for 1,500,000 timesteps |
|
model.learn(total_timesteps=1500000, progress_bar=True) |
|
# Specify file name for model and save the model to file |
|
model_name = "ppo-LunarLander-v2" |
|
model.save(model_name) |
|
|
|
# Create a new environment for evaluation |
|
eval_env = gym.make("LunarLander-v2") |
|
|
|
# Evaluate the model with 10 evaluation episodes and deterministic=True |
|
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) |
|
|
|
# Print the results |
|
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") |
|
``` |
|
|