metadata
language:
- as
- bn
- brx
- doi
- en
- gom
- gu
- hi
- kn
- ks
- kas
- mai
- ml
- mr
- mni
- mnb
- ne
- or
- pa
- sa
- sat
- sd
- snd
- ta
- te
- ur
language_details: >-
asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
hin_Deva, kan_Knda, kas_Arab, kas_Deva, mai_Deva, mal_Mlym, mar_Deva,
mni_Beng, mni_Mtei, npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck,
snd_Arab, snd_Deva, tam_Taml, tel_Telu, urd_Arab
tags:
- indictrans2
- translation
- ai4bharat
- multilingual
license: mit
datasets:
- flores-200
- IN22-Gen
- IN22-Conv
metrics:
- bleu
- chrf
- chrf++
- comet
inference: false
IndicTrans2
This is the model card of IndicTrans2 Indic-En 1.1B variant.
Here are the metrics for the particular checkpoint.
Please refer to Appendix D: Model Card
of the preprint for further details on model training, intended use, data, metrics, limitations and recommendations.
Usage Instructions
Please refer to the github repository for a detail description on how to use HF compatible IndicTrans2 models for inference.
Citation
If you consider using our work then please cite using:
@article{ai4bharat2023indictrans2,
title = {IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author = {AI4Bharat and Jay Gala and Pranjal A. Chitale and Raghavan AK and Sumanth Doddapaneni and Varun Gumma and Aswanth Kumar and Janki Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M. Khapra and Raj Dabre and Anoop Kunchukuttan},
year = {2023},
journal = {arXiv preprint arXiv: 2305.16307}
}