gpt-neoMedChatbot / README.md
ajsal27's picture
End of training
68861b7 verified
|
raw
history blame
3.51 kB
metadata
base_model: EleutherAI/gpt-neo-125m
library_name: peft
license: mit
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: gpt-neoMedChatbot
    results: []

gpt-neoMedChatbot

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.1874 0.0709 100 3.0118
2.8756 0.1417 200 2.8228
2.7134 0.2126 300 2.7358
2.6948 0.2835 400 2.6833
2.6386 0.3544 500 2.6441
2.6525 0.4252 600 2.6150
2.6242 0.4961 700 2.5856
2.6444 0.5670 800 2.5701
2.6007 0.6378 900 2.5540
2.462 0.7087 1000 2.5418
2.5641 0.7796 1100 2.5315
2.4672 0.8505 1200 2.5238
2.5017 0.9213 1300 2.5146
2.6389 0.9922 1400 2.5083
2.4869 1.0631 1500 2.5021
2.5302 1.1339 1600 2.4942
2.497 1.2048 1700 2.4886
2.4965 1.2757 1800 2.4846
2.5535 1.3466 1900 2.4783
2.5747 1.4174 2000 2.4732
2.4534 1.4883 2100 2.4679
2.4909 1.5592 2200 2.4657
2.5192 1.6300 2300 2.4617
2.4271 1.7009 2400 2.4573
2.4855 1.7718 2500 2.4542
2.4599 1.8427 2600 2.4530
2.4482 1.9135 2700 2.4444
2.493 1.9844 2800 2.4446
2.3527 2.0553 2900 2.4414
2.5243 2.1262 3000 2.4376
2.4644 2.1970 3100 2.4330
2.386 2.2679 3200 2.4308
2.3762 2.3388 3300 2.4281
2.3827 2.4096 3400 2.4245
2.3487 2.4805 3500 2.4221
2.4737 2.5514 3600 2.4192
2.4907 2.6223 3700 2.4171
2.3967 2.6931 3800 2.4159
2.4772 2.7640 3900 2.4146
2.4114 2.8349 4000 2.4106
2.4017 2.9057 4100 2.4065
2.3477 2.9766 4200 2.4059

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1