metadata
language: tr
widget:
- text: >-
Almanya’nın Mainz kentinde Türk profesör Uğur Şahin ile eşi Özlem
Türeci’nin kurduğu ve yönettiği biyoteknoloji şirketi BioNTech ile aşı
sürecini sürdüren Pfizer’ın corona virüsü aşısı üretmeye başladığı
belirtildi.
Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
The ConvBERT architecture is presented in the "ConvBERT: Improving BERT with Span-based Dynamic Convolution" paper.
Fine-tuning parameters:
task = "ner"
model_checkpoint = "dbmdz/convbert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
How to use:
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
NER("text")
# Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
Reference test results:
- accuracy: 0.9937648915431506
- f1: 0.9610945644080416
- precision: 0.9619899385131359
- recall: 0.9602008554956295