akdeniz27's picture
Update README.md
85f99ba
|
raw
history blame
1.6 kB
---
language: tr
widget:
- text: "Almanya’nın Mainz kentinde Türk profesör Uğur Şahin ile eşi Özlem Türeci’nin kurduğu ve yönettiği biyoteknoloji şirketi BioNTech ile aşı sürecini sürdüren Pfizer’ın corona virüsü aşısı üretmeye başladığı belirtildi."
---
# Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)
using a reviewed version of well known Turkish NER dataset
(https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper.
# Fine-tuning parameters:
```
task = "ner"
model_checkpoint = "dbmdz/convbert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
```
# How to use:
```
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
NER("text")
# Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
```
# Reference test results:
* accuracy: 0.9937648915431506
* f1: 0.9610945644080416
* precision: 0.9619899385131359
* recall: 0.9602008554956295