File size: 4,982 Bytes
c4adc54
9a35fa7
 
 
c4adc54
 
 
 
 
 
 
 
 
9a35fa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4adc54
9a35fa7
c4adc54
 
 
 
 
 
 
 
 
9a35fa7
 
 
c4adc54
 
 
 
 
 
 
 
9a35fa7
 
 
c4adc54
9a35fa7
c4adc54
 
 
 
 
 
 
9a35fa7
c4adc54
 
 
 
 
 
 
 
 
 
 
 
9a35fa7
c4adc54
 
 
 
 
9a35fa7
c4adc54
 
 
 
9a35fa7
c4adc54
9a35fa7
 
 
 
c4adc54
 
 
9a35fa7
c4adc54
 
 
9a35fa7
c4adc54
 
 
9a35fa7
 
c4adc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a35fa7
 
 
 
 
 
c4adc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import logging
import sys
import datetime

from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate

from belarusian_text_normalizer import BelarusianTextNormalizer


now_str = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')


logger = logging.getLogger(__name__)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler(filename=f'eval_{now_str}.log', mode='w')
    ],
)
logger.setLevel(logging.INFO)


wer_metric = evaluate.load("wer")
whisper_norm = BelarusianTextNormalizer()


def is_target_text_in_range(ref):
    if ref.strip() == "ignore time segment in scoring":
        return False
    else:
        return ref.strip() != ""


def normalise(sample, text_column: str):
    sample["norm_text"] = whisper_norm(sample[text_column])
    return sample


def data(dataset):
    for i, item in enumerate(dataset):
        yield {**item["audio"], "reference": item["norm_text"]}


def main(args):
    logger.info(f'running evaluation script with following parameters: {args}')
    logger.info(f'using following text normalier: {whisper_norm}')

    batch_size = args.batch_size
    whisper_asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)

    whisper_asr.model.config.forced_decoder_ids = (
        whisper_asr.tokenizer.get_decoder_prompt_ids(
            language=args.language, task="transcribe"
        )
    )

    logger.info('loading dataset')
    dataset = load_dataset(
        args.dataset,
        args.config,
        split=args.split,
        streaming=args.streaming,
        use_auth_token=True,
    )

    # Only uncomment for debugging
    dataset = dataset.take(args.max_eval_samples)

    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    dataset = dataset.map(normalise, fn_kwargs=dict(text_column=args.text_column))
    dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])

    predictions = []
    references = []

    logger.info('running inference')
    for out in whisper_asr(data(dataset), batch_size=batch_size):
        predictions.append(whisper_norm(out["text"]))
        references.append(out["reference"][0])

    logger.info('computing metrics')
    wer = wer_metric.compute(references=references, predictions=predictions)
    wer = wer * 100

    logger.info('metrics computed')
    logger.info(f'WER: {wer}')

    evaluate.push_to_hub(
        model_id=args.model_id,

        metric_value=wer,
        metric_type="wer",
        metric_name="WER",

        dataset_name=args.dataset,
        dataset_type=args.dataset,
        dataset_config=args.config,
        dataset_split=args.split,
        
        task_type="automatic-speech-recognition",
        task_name="Automatic Speech Recognition"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id",
        type=str,
        required=True,
        help="Model identifier. Should be loadable with 🤗 Transformers",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="mozilla-foundation/common_voice_11_0",
        help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
    )
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="test",
        help="Split of the dataset. *E.g.* `'test'`",
    )
    parser.add_argument(
        "--text_column",
        type=str,
        required=True,
        help="Dataset column name containing target transcription of an audiofile"
    )
    parser.add_argument(
        "--device",
        type=int,
        default=-1,
        help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=16,
        help="Number of samples to go through each streamed batch.",
    )
    parser.add_argument(
        "--max_eval_samples",
        type=int,
        default=None,
        help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
    )
    parser.add_argument(
        "--streaming",
        type=bool,
        default=True,
        help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
    )
    parser.add_argument(
        "--language",
        type=str,
        required=True,
        help="Two letter language code for the transcription language, e.g. use 'en' for English.",
    )
    args = parser.parse_args()

    main(args)