alsubari's picture
Update README.md
d8c3284
|
raw
history blame
6.89 kB
---
language:
- ar
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [Arabic]
- **License:** [More Information Needed]
- **Finetuned from model :** [https://huggingface.co/aubmindlab/aragpt2-mega]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
1. The model can be helpful for the arabic langauge students/researchers, since it provide the full sentence anaylsis (اعراب الجملة ) in arabic language.
2.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
1. This model can't be use for grammar check, since it dail with high level of arabic correct sentence as input
2. Don't use arabic dailects in input sentence.
3.
4.
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
```python
from transformers import GPT2Tokenizer
from arabert.preprocess import ArabertPreprocessor
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
from pyarabic.araby import strip_tashkeel
import pyarabic.trans
model_name='alsubari/aragpt2-mega-pos-msa'
tokenizer = GPT2Tokenizer.from_pretrained('alsubari/aragpt2-mega-pos-msa')
model = GPT2LMHeadModel.from_pretrained('alsubari/aragpt2-mega-pos-msa').to("cuda")
arabert_prep = ArabertPreprocessor(model_name='aubmindlab/aragpt2-mega')
prml=['اعراب الجملة :', ' صنف الكلمات من الجملة :']
text='تعلَّمْ من أخطائِكَ'
text=arabert_prep.preprocess(strip_tashkeel(text))
generation_args = {
'pad_token_id':tokenizer.eos_token_id,
'max_length': 256,
'num_beams':20,
'no_repeat_ngram_size': 3,
'top_k': 20,
'top_p': 0.1, # Consider all tokens with non-zero probability
'do_sample': True,
'repetition_penalty':2.0
}
##Pose Tagging
input_text = f'<|startoftext|>Instruction: {prml[1]} {text}<|pad|>Answer:'
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
output_ids = model.generate(input_ids=input_ids,**generation_args)
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
answer_pose=pyarabic.trans.delimite_language(output_text, start="<token>", end="</token>")
print(answer_pose)
# <token>تعلم : تعلم</token> : Verb <token>من : من</token> : Relative pronoun <token>أخطائك : اخطا</token> : Noun <token>ك</token> : Personal pronunction
##Arabic Sentence Analysis
input_text = f'<|startoftext|>Instruction: {prml[0]} {text}<|pad|>Answer:'
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
output_ids = model.generate(input_ids=input_ids,**generation_args)
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
print(output_text)
#تعلم : تعلم : فعل ، مفرد المخاطب للمذكر ، فعل مضارع ، مرفوع من : من : حرف جر أخطائك : اخطا : اسم ، جمع المذكر ، مجرور ك : ضمير ، مفرد المتكلم
```
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[[email protected]]