|
--- |
|
license: mit |
|
language: |
|
- en |
|
datasets: climate_fever |
|
tags: |
|
- fact-checking |
|
- climate |
|
- text entailment |
|
--- |
|
|
|
This model fine-tuned [ClimateBert](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the textual entailment task using Climate FEVER data. Given (claim, evidence) pairs, the model predicts support (entailment), refute (contradict), or not enough info (neutral). The model has 67% validation accuracy. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("amandakonet/climatebert-fact-checking") |
|
tokenizer = AutoTokenizer.from_pretrained("amandakonet/climatebert-fact-checking") |
|
|
|
features = tokenizer(['Beginning in 2005, however, polar ice modestly receded for several years'], |
|
['Polar Discovery "Continued Sea Ice Decline in 2005'], |
|
padding='max_length', truncation=True, return_tensors="pt", max_length=512) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
scores = model(**features).logits |
|
label_mapping = ['entailment', 'contradiction', 'neutral'] |
|
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] |
|
print(labels) |
|
``` |