metadata
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: WhpTiny-hi-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 43.666169895678095
WhpTiny-hi-v2
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0825
- Wer: 43.6662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1627 | 7.01 | 1000 | 0.5714 | 40.9378 |
0.0275 | 14.02 | 2000 | 0.7620 | 42.5943 |
0.0032 | 22.0 | 3000 | 0.9561 | 43.0443 |
0.0012 | 29.01 | 4000 | 1.0517 | 43.4426 |
0.0008 | 36.02 | 5000 | 1.0825 | 43.6662 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2