andrecastro's picture
Model save
59a628f
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9883021390374331
          - name: Precision
            type: precision
            value: 0.9883071765108582
          - name: Recall
            type: recall
            value: 0.9883021390374331

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0394
  • Accuracy: 0.9883
  • Precision: 0.9883
  • Recall: 0.9883
  • Confusion Matrix: [[1497, 15], [20, 1460]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Confusion Matrix
0.1107 1.0 374 0.0641 0.9786 0.9787 0.9786 [[1488, 24], [40, 1440]]
0.1079 2.0 748 0.0560 0.9773 0.9776 0.9773 [[1498, 14], [54, 1426]]
0.0624 3.0 1122 0.0394 0.9883 0.9883 0.9883 [[1497, 15], [20, 1460]]

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0