metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6343582887700535
- name: Precision
type: precision
value: 0.7715676584335054
- name: Recall
type: recall
value: 0.6343582887700535
swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.3036
- Accuracy: 0.6344
- Precision: 0.7716
- Recall: 0.6344
- Confusion Matrix: [[1498, 14], [1080, 400]]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Confusion Matrix |
---|---|---|---|---|---|---|---|
0.1263 | 1.0 | 374 | 1.1458 | 0.7309 | 0.8125 | 0.7309 | [[1493, 19], [786, 694]] |
0.0301 | 2.0 | 748 | 3.0924 | 0.6330 | 0.7754 | 0.6330 | [[1502, 10], [1088, 392]] |
0.0467 | 3.0 | 1122 | 3.3036 | 0.6344 | 0.7716 | 0.6344 | [[1498, 14], [1080, 400]] |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0