anh-dangminh's picture
End of training
8a9b52e verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
datasets:
  - oxford102_flower_dataset
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: resnet-50-finetuned-oxfordflowers
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: oxford102_flower_dataset
          type: oxford102_flower_dataset
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8329809725158562
          - name: Precision
            type: precision
            value: 0.8530722962152707
          - name: Recall
            type: recall
            value: 0.8329809725158562
          - name: F1
            type: f1
            value: 0.8319188207666911

resnet-50-finetuned-oxfordflowers

This model is a fine-tuned version of microsoft/resnet-50 on the oxford102_flower_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6561
  • Accuracy: 0.8330
  • Precision: 0.8531
  • Recall: 0.8330
  • F1: 0.8319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
4.4813 1.0 32 4.1934 0.3176 0.3522 0.3176 0.2599
2.6507 2.0 64 1.8716 0.5382 0.5792 0.5382 0.4930
1.257 3.0 96 1.0998 0.7216 0.7663 0.7216 0.7085
0.5333 4.0 128 0.9724 0.7422 0.7875 0.7422 0.7296
0.2506 5.0 160 0.8243 0.7627 0.7975 0.7627 0.7566
0.0689 6.0 192 0.7067 0.8147 0.8482 0.8147 0.8111
0.0325 7.0 224 0.6370 0.8206 0.8428 0.8206 0.8175
0.0132 8.0 256 0.5774 0.8412 0.8617 0.8412 0.8389
0.0117 9.0 288 0.5469 0.8559 0.8726 0.8559 0.8542
0.0066 10.0 320 0.5384 0.8608 0.8722 0.8608 0.8575
0.0072 11.0 352 0.5246 0.8686 0.8783 0.8686 0.8650
0.0068 12.0 384 0.5130 0.8716 0.8790 0.8716 0.8679
0.0045 13.0 416 0.5038 0.8716 0.8814 0.8716 0.8691
0.0025 14.0 448 0.5486 0.85 0.8627 0.85 0.8448
0.0029 15.0 480 0.4992 0.8637 0.8736 0.8637 0.8619

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0