File size: 13,356 Bytes
0d51201 ab03fb1 15d2e3e ab03fb1 0d51201 ab03fb1 15d2e3e e7a5ee7 050e67d ec49ce0 050e67d 15d2e3e ab03fb1 050e67d ab03fb1 050e67d ab03fb1 050e67d ab03fb1 c09032c 15d2e3e ab03fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-spelling-nl-1m-3
results: []
---
# bart-base-spelling-nl-1m-3
This model is a Dutch fine-tuned version of
[facebook/bart-base](https://huggingface.co/facebook/bart-base).
It achieves the following results on the evaluation set:
- Loss: 0.0053
- Cer: 0.0117
## Model description
This is a fine-tuned version of
[facebook/bart-base](https://huggingface.co/facebook/bart-base)
trained on spelling correction. It leans on the excellent work by
Oliver Guhr ([github](https://github.com/oliverguhr/spelling),
[huggingface](https://huggingface.co/oliverguhr/spelling-correction-english-base)). Training
was performed on an AWS EC2 instance (g5.xlarge) on a single GPU, and
took about two days.
## Intended uses & limitations
The intended use for this model is to be a component of the
[Valkuil.net](https://valkuil.net) context-sensitive spelling
checker.
## Training and evaluation data
The model was trained on a Dutch dataset composed of 2,964,203 lines
of text from three public Dutch sources, downloaded from the
[Opus corpus](https://opus.nlpl.eu/):
- nl-europarlv7.1m.txt (1,000,000 lines)
- nl-opensubtitles2016.1m.txt (1,000,000 lines)
- nl-wikipedia.txt (964,203 lines)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:------:|:---------------:|:------:|
| 0.0834 | 0.01 | 1000 | 0.0603 | 0.9216 |
| 0.0566 | 0.02 | 2000 | 0.0467 | 0.9217 |
| 0.0534 | 0.03 | 3000 | 0.0436 | 0.9216 |
| 0.0461 | 0.04 | 4000 | 0.0392 | 0.9216 |
| 0.0416 | 0.05 | 5000 | 0.0354 | 0.9216 |
| 0.0433 | 0.06 | 6000 | 0.0336 | 0.9216 |
| 0.045 | 0.08 | 7000 | 0.0315 | 0.9216 |
| 0.0452 | 0.09 | 8000 | 0.0305 | 0.9216 |
| 0.04 | 0.1 | 9000 | 0.0281 | 0.9216 |
| 0.0307 | 0.11 | 10000 | 0.0273 | 0.9216 |
| 0.0382 | 0.12 | 11000 | 0.0269 | 0.9216 |
| 0.036 | 0.13 | 12000 | 0.0254 | 0.9216 |
| 0.0412 | 0.14 | 13000 | 0.0258 | 0.9216 |
| 0.0404 | 0.15 | 14000 | 0.0238 | 0.9216 |
| 0.0265 | 0.16 | 15000 | 0.0239 | 0.9216 |
| 0.029 | 0.17 | 16000 | 0.0235 | 0.9216 |
| 0.0295 | 0.18 | 17000 | 0.0218 | 0.9216 |
| 0.0262 | 0.19 | 18000 | 0.0214 | 0.9216 |
| 0.0274 | 0.21 | 19000 | 0.0222 | 0.9216 |
| 0.0317 | 0.22 | 20000 | 0.0204 | 0.9216 |
| 0.0248 | 0.23 | 21000 | 0.0204 | 0.9216 |
| 0.0258 | 0.24 | 22000 | 0.0195 | 0.9216 |
| 0.0247 | 0.25 | 23000 | 0.0188 | 0.9216 |
| 0.0285 | 0.26 | 24000 | 0.0191 | 0.9215 |
| 0.031 | 0.27 | 25000 | 0.0192 | 0.9216 |
| 0.0267 | 0.28 | 26000 | 0.0188 | 0.9216 |
| 0.0245 | 0.29 | 27000 | 0.0177 | 0.9216 |
| 0.0258 | 0.3 | 28000 | 0.0177 | 0.9216 |
| 0.0235 | 0.31 | 29000 | 0.0169 | 0.9216 |
| 0.0235 | 0.32 | 30000 | 0.0176 | 0.9216 |
| 0.0223 | 0.34 | 31000 | 0.0165 | 0.9216 |
| 0.0219 | 0.35 | 32000 | 0.0167 | 0.9216 |
| 0.0214 | 0.36 | 33000 | 0.0165 | 0.9216 |
| 0.0232 | 0.37 | 34000 | 0.0163 | 0.9216 |
| 0.0192 | 0.38 | 35000 | 0.0162 | 0.9216 |
| 0.0159 | 0.39 | 36000 | 0.0160 | 0.9216 |
| 0.0205 | 0.4 | 37000 | 0.0150 | 0.9216 |
| 0.0197 | 0.41 | 38000 | 0.0152 | 0.9216 |
| 0.0205 | 0.42 | 39000 | 0.0150 | 0.9216 |
| 0.0182 | 0.43 | 40000 | 0.0145 | 0.9216 |
| 0.0204 | 0.44 | 41000 | 0.0139 | 0.9216 |
| 0.0201 | 0.45 | 42000 | 0.0146 | 0.9216 |
| 0.0202 | 0.46 | 43000 | 0.0132 | 0.9215 |
| 0.0219 | 0.48 | 44000 | 0.0146 | 0.9216 |
| 0.0161 | 0.49 | 45000 | 0.0134 | 0.9215 |
| 0.0172 | 0.5 | 46000 | 0.0137 | 0.9216 |
| 0.0199 | 0.51 | 47000 | 0.0133 | 0.9215 |
| 0.0211 | 0.52 | 48000 | 0.0132 | 0.9215 |
| 0.0184 | 0.53 | 49000 | 0.0136 | 0.9216 |
| 0.0191 | 0.54 | 50000 | 0.0129 | 0.9216 |
| 0.017 | 0.55 | 51000 | 0.0127 | 0.9216 |
| 0.0188 | 0.56 | 52000 | 0.0127 | 0.9215 |
| 0.0157 | 0.57 | 53000 | 0.0128 | 0.9216 |
| 0.0158 | 0.58 | 54000 | 0.0127 | 0.9216 |
| 0.0145 | 0.59 | 55000 | 0.0117 | 0.9216 |
| 0.0148 | 0.61 | 56000 | 0.0123 | 0.9216 |
| 0.0153 | 0.62 | 57000 | 0.0115 | 0.9216 |
| 0.0182 | 0.63 | 58000 | 0.0115 | 0.9216 |
| 0.0178 | 0.64 | 59000 | 0.0112 | 0.9215 |
| 0.0187 | 0.65 | 60000 | 0.0113 | 0.9215 |
| 0.0174 | 0.66 | 61000 | 0.0119 | 0.9216 |
| 0.0135 | 0.67 | 62000 | 0.0115 | 0.9215 |
| 0.0167 | 0.68 | 63000 | 0.0112 | 0.9216 |
| 0.0163 | 0.69 | 64000 | 0.0111 | 0.9215 |
| 0.0128 | 0.7 | 65000 | 0.0110 | 0.9215 |
| 0.0178 | 0.71 | 66000 | 0.0113 | 0.9215 |
| 0.0142 | 0.72 | 67000 | 0.0110 | 0.9215 |
| 0.0143 | 0.74 | 68000 | 0.0110 | 0.9215 |
| 0.0168 | 0.75 | 69000 | 0.0106 | 0.9216 |
| 0.0136 | 0.76 | 70000 | 0.0107 | 0.9215 |
| 0.0141 | 0.77 | 71000 | 0.0104 | 0.9215 |
| 0.0217 | 0.78 | 72000 | 0.0115 | 0.9216 |
| 0.012 | 0.79 | 73000 | 0.0105 | 0.9215 |
| 0.0141 | 0.8 | 74000 | 0.0100 | 0.9215 |
| 0.0136 | 0.81 | 75000 | 0.0096 | 0.9215 |
| 0.0106 | 0.82 | 76000 | 0.0104 | 0.9216 |
| 0.0176 | 0.83 | 77000 | 0.0102 | 0.9216 |
| 0.0169 | 0.84 | 78000 | 0.0099 | 0.9215 |
| 0.0118 | 0.85 | 79000 | 0.0102 | 0.9215 |
| 0.0178 | 0.86 | 80000 | 0.0095 | 0.9215 |
| 0.0145 | 0.88 | 81000 | 0.0097 | 0.9216 |
| 0.0154 | 0.89 | 82000 | 0.0099 | 0.9215 |
| 0.0129 | 0.9 | 83000 | 0.0094 | 0.9215 |
| 0.0125 | 0.91 | 84000 | 0.0097 | 0.9215 |
| 0.0147 | 0.92 | 85000 | 0.0093 | 0.9215 |
| 0.0145 | 0.93 | 86000 | 0.0091 | 0.9215 |
| 0.0121 | 0.94 | 87000 | 0.0089 | 0.9215 |
| 0.0125 | 0.95 | 88000 | 0.0094 | 0.9215 |
| 0.0113 | 0.96 | 89000 | 0.0088 | 0.9216 |
| 0.0098 | 0.97 | 90000 | 0.0094 | 0.9216 |
| 0.0137 | 0.98 | 91000 | 0.0089 | 0.9215 |
| 0.0105 | 0.99 | 92000 | 0.0091 | 0.9215 |
| 0.01 | 1.01 | 93000 | 0.0090 | 0.9216 |
| 0.0103 | 1.02 | 94000 | 0.0087 | 0.9216 |
| 0.0103 | 1.03 | 95000 | 0.0091 | 0.9215 |
| 0.0107 | 1.04 | 96000 | 0.0088 | 0.9216 |
| 0.0109 | 1.05 | 97000 | 0.0087 | 0.9215 |
| 0.0102 | 1.06 | 98000 | 0.0090 | 0.9216 |
| 0.0109 | 1.07 | 99000 | 0.0087 | 0.9215 |
| 0.0094 | 1.08 | 100000 | 0.0084 | 0.9215 |
| 0.009 | 1.09 | 101000 | 0.0085 | 0.9215 |
| 0.0085 | 1.1 | 102000 | 0.0084 | 0.9216 |
| 0.0123 | 1.11 | 103000 | 0.0085 | 0.9215 |
| 0.0094 | 1.12 | 104000 | 0.0084 | 0.9215 |
| 0.0076 | 1.14 | 105000 | 0.0081 | 0.9215 |
| 0.0119 | 1.15 | 106000 | 0.0079 | 0.9216 |
| 0.0079 | 1.16 | 107000 | 0.0081 | 0.9216 |
| 0.0108 | 1.17 | 108000 | 0.0080 | 0.9216 |
| 0.01 | 1.18 | 109000 | 0.0077 | 0.9216 |
| 0.0112 | 1.19 | 110000 | 0.0077 | 0.9216 |
| 0.0092 | 1.2 | 111000 | 0.0076 | 0.9215 |
| 0.0097 | 1.21 | 112000 | 0.0077 | 0.9215 |
| 0.0093 | 1.22 | 113000 | 0.0078 | 0.9215 |
| 0.0106 | 1.23 | 114000 | 0.0077 | 0.9215 |
| 0.0107 | 1.24 | 115000 | 0.0076 | 0.9215 |
| 0.0111 | 1.25 | 116000 | 0.0077 | 0.9215 |
| 0.0118 | 1.26 | 117000 | 0.0076 | 0.9215 |
| 0.0088 | 1.28 | 118000 | 0.0076 | 0.9215 |
| 0.01 | 1.29 | 119000 | 0.0076 | 0.9215 |
| 0.0102 | 1.3 | 120000 | 0.0076 | 0.9215 |
| 0.0106 | 1.31 | 121000 | 0.0076 | 0.9215 |
| 0.0099 | 1.32 | 122000 | 0.0077 | 0.9215 |
| 0.0099 | 1.33 | 123000 | 0.0077 | 0.9216 |
| 0.0105 | 1.34 | 124000 | 0.0075 | 0.9216 |
| 0.0082 | 1.35 | 125000 | 0.0074 | 0.9216 |
| 0.0088 | 1.36 | 126000 | 0.0072 | 0.9215 |
| 0.0077 | 1.37 | 127000 | 0.0070 | 0.9215 |
| 0.0063 | 1.38 | 128000 | 0.0074 | 0.9216 |
| 0.0084 | 1.39 | 129000 | 0.0069 | 0.9215 |
| 0.0085 | 1.41 | 130000 | 0.0071 | 0.9215 |
| 0.0107 | 1.42 | 131000 | 0.0067 | 0.9215 |
| 0.0064 | 1.43 | 132000 | 0.0068 | 0.9215 |
| 0.0064 | 1.44 | 133000 | 0.0069 | 0.9215 |
| 0.0139 | 1.45 | 134000 | 0.0067 | 0.9216 |
| 0.0093 | 1.46 | 135000 | 0.0068 | 0.9216 |
| 0.009 | 1.47 | 136000 | 0.0067 | 0.9215 |
| 0.0083 | 1.48 | 137000 | 0.0065 | 0.9216 |
| 0.0108 | 1.49 | 138000 | 0.0064 | 0.9215 |
| 0.0074 | 1.5 | 139000 | 0.0066 | 0.9215 |
| 0.009 | 1.51 | 140000 | 0.0064 | 0.9216 |
| 0.0062 | 1.52 | 141000 | 0.0064 | 0.9215 |
| 0.007 | 1.54 | 142000 | 0.0063 | 0.9215 |
| 0.0082 | 1.55 | 143000 | 0.0062 | 0.9215 |
| 0.0077 | 1.56 | 144000 | 0.0064 | 0.9215 |
| 0.0094 | 1.57 | 145000 | 0.0062 | 0.9215 |
| 0.0085 | 1.58 | 146000 | 0.0063 | 0.9215 |
| 0.0091 | 1.59 | 147000 | 0.0062 | 0.9215 |
| 0.0087 | 1.6 | 148000 | 0.0061 | 0.9215 |
| 0.0066 | 1.61 | 149000 | 0.0062 | 0.9215 |
| 0.0087 | 1.62 | 150000 | 0.0061 | 0.9215 |
| 0.0059 | 1.63 | 151000 | 0.0059 | 0.9215 |
| 0.0086 | 1.64 | 152000 | 0.0059 | 0.9215 |
| 0.0066 | 1.65 | 153000 | 0.0059 | 0.9215 |
| 0.0076 | 1.66 | 154000 | 0.0058 | 0.9215 |
| 0.0073 | 1.68 | 155000 | 0.0060 | 0.9215 |
| 0.0118 | 1.69 | 156000 | 0.0060 | 0.9215 |
| 0.0058 | 1.7 | 157000 | 0.0059 | 0.9215 |
| 0.0093 | 1.71 | 158000 | 0.0058 | 0.9215 |
| 0.0079 | 1.72 | 159000 | 0.0058 | 0.9215 |
| 0.0063 | 1.73 | 160000 | 0.0059 | 0.9215 |
| 0.0065 | 1.74 | 161000 | 0.0056 | 0.9215 |
| 0.0105 | 1.75 | 162000 | 0.0057 | 0.9215 |
| 0.0075 | 1.76 | 163000 | 0.0055 | 0.9215 |
| 0.0069 | 1.77 | 164000 | 0.0056 | 0.9215 |
| 0.0075 | 1.78 | 165000 | 0.0056 | 0.9215 |
| 0.0067 | 1.79 | 166000 | 0.0055 | 0.9215 |
| 0.0069 | 1.81 | 167000 | 0.0056 | 0.9215 |
| 0.0063 | 1.82 | 168000 | 0.0056 | 0.9215 |
| 0.0058 | 1.83 | 169000 | 0.0055 | 0.9215 |
| 0.0058 | 1.84 | 170000 | 0.0054 | 0.9215 |
| 0.0081 | 1.85 | 171000 | 0.0055 | 0.9215 |
| 0.0071 | 1.86 | 172000 | 0.0054 | 0.9215 |
| 0.0077 | 1.87 | 173000 | 0.0054 | 0.9215 |
| 0.0053 | 1.88 | 174000 | 0.0053 | 0.9215 |
| 0.0067 | 1.89 | 175000 | 0.0053 | 0.9215 |
| 0.0066 | 1.9 | 176000 | 0.0053 | 0.9215 |
| 0.0084 | 1.91 | 177000 | 0.0053 | 0.9215 |
| 0.0066 | 1.92 | 178000 | 0.0052 | 0.9215 |
| 0.0057 | 1.94 | 179000 | 0.0053 | 0.9215 |
| 0.0059 | 1.95 | 180000 | 0.0052 | 0.9215 |
| 0.0053 | 1.96 | 181000 | 0.0053 | 0.9215 |
| 0.0056 | 1.97 | 182000 | 0.0052 | 0.9215 |
| 0.0054 | 1.98 | 183000 | 0.0052 | 0.9215 |
| 0.0053 | 1.99 | 184000 | 0.0052 | 0.9215 |
| 0.0066 | 2.0 | 185000 | 0.0052 | 0.9215 |
### Framework versions
- Transformers 4.27.3
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2
|