|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
num_consumers = 10 |
|
interest_size = 5 |
|
wealth_size = 1 |
|
feature_size = interest_size + wealth_size |
|
|
|
consumer_profiles = torch.rand((num_consumers, feature_size)) |
|
|
|
interests = consumer_profiles[:, :interest_size] |
|
wealth_data = consumer_profiles[:, interest_size:] |
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(wealth_size, wealth_size) |
|
|
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
net = WealthTransferNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
similarity_matrix = cosine_similarity(interests) |
|
|
|
|
|
threshold = 0.8 |
|
similar_pairs = np.argwhere(similarity_matrix > threshold) |
|
|
|
|
|
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]] |
|
|
|
|
|
for pair in similar_pairs: |
|
consumer_a, consumer_b = pair |
|
|
|
|
|
wealth_a = wealth_data[consumer_a] |
|
wealth_b = wealth_data[consumer_b] |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
transferred_wealth_a = net(wealth_a) |
|
transferred_wealth_b = net(wealth_b) |
|
|
|
|
|
loss_a_to_b = criterion(transferred_wealth_a, wealth_b) |
|
loss_b_to_a = criterion(transferred_wealth_b, wealth_a) |
|
total_loss = loss_a_to_b + loss_b_to_a |
|
|
|
total_loss.backward() |
|
optimizer.step() |
|
|
|
|
|
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix) |
|
|
|
|
|
plt.figure(figsize=(8, 6)) |
|
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest') |
|
plt.colorbar(label='Cosine Similarity') |
|
plt.title("Interest Similarity Matrix") |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
|
|
num_consumers = 10 |
|
interest_size = 5 |
|
wealth_size = 1 |
|
feature_size = interest_size + wealth_size |
|
|
|
|
|
consumer_profiles = torch.rand((num_consumers, feature_size)) |
|
|
|
|
|
interests = consumer_profiles[:, :interest_size] |
|
wealth_data = consumer_profiles[:, interest_size:] |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(wealth_size, wealth_size) |
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
|
|
class VPNLayer(nn.Module): |
|
def __init__(self, encryption_key): |
|
super(VPNLayer, self).__init__() |
|
self.encryption_key = encryption_key |
|
|
|
def encrypt_data(self, data): |
|
|
|
encrypted_data = data * torch.sin(self.encryption_key) |
|
return encrypted_data |
|
|
|
def decrypt_data(self, encrypted_data, passcode): |
|
|
|
if passcode == self.encryption_key: |
|
decrypted_data = encrypted_data / torch.sin(self.encryption_key) |
|
return decrypted_data |
|
else: |
|
raise ValueError("Invalid Passcode! Access Denied.") |
|
|
|
|
|
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) |
|
|
|
|
|
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles) |
|
|
|
|
|
passcode = torch.tensor(0.5) |
|
|
|
|
|
try: |
|
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode) |
|
print("Access Granted. Decrypted Consumer Data:") |
|
print(decrypted_profiles) |
|
except ValueError as e: |
|
print(e) |
|
|
|
|
|
wrong_passcode = torch.tensor(0.3) |
|
|
|
try: |
|
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode) |
|
except ValueError as e: |
|
print(e) |
|
|
|
|
|
net = WealthTransferNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
similarity_matrix = cosine_similarity(interests) |
|
|
|
|
|
threshold = 0.8 |
|
similar_pairs = np.argwhere(similarity_matrix > threshold) |
|
|
|
|
|
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]] |
|
|
|
|
|
for pair in similar_pairs: |
|
consumer_a, consumer_b = pair |
|
|
|
|
|
wealth_a = wealth_data[consumer_a] |
|
wealth_b = wealth_data[consumer_b] |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
transferred_wealth_a = net(wealth_a) |
|
transferred_wealth_b = net(wealth_b) |
|
|
|
|
|
loss_a_to_b = criterion(transferred_wealth_a, wealth_b) |
|
loss_b_to_a = criterion(transferred_wealth_b, wealth_a) |
|
total_loss = loss_a_to_b + loss_b_to_a |
|
|
|
total_loss.backward() |
|
optimizer.step() |
|
|
|
|
|
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix) |
|
|
|
|
|
plt.figure(figsize=(8, 6)) |
|
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest') |
|
plt.colorbar(label='Cosine Similarity') |
|
plt.title("Interest Similarity Matrix") |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
|
|
num_consumers = 10 |
|
interest_size = 5 |
|
wealth_size = 1 |
|
feature_size = interest_size + wealth_size |
|
|
|
|
|
consumer_profiles = torch.rand((num_consumers, feature_size)) |
|
|
|
|
|
interests = consumer_profiles[:, :interest_size] |
|
wealth_data = consumer_profiles[:, interest_size:] |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(wealth_size, wealth_size) |
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
|
|
class VPNLayer(nn.Module): |
|
def __init__(self, encryption_key): |
|
super(VPNLayer, self).__init__() |
|
self.encryption_key = encryption_key |
|
|
|
def encrypt_data(self, data): |
|
|
|
encrypted_data = data * torch.sin(self.encryption_key) |
|
return encrypted_data |
|
|
|
def decrypt_data(self, encrypted_data, passcode): |
|
|
|
if passcode == self.encryption_key: |
|
decrypted_data = encrypted_data / torch.sin(self.encryption_key) |
|
return decrypted_data |
|
else: |
|
raise ValueError("Invalid Passcode! Access Denied.") |
|
|
|
|
|
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) |
|
|
|
|
|
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles) |
|
|
|
|
|
passcode = torch.tensor(0.5) |
|
|
|
|
|
try: |
|
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode) |
|
print("Access Granted. Decrypted Consumer Data:") |
|
print(decrypted_profiles) |
|
except ValueError as e: |
|
print(e) |
|
|
|
|
|
wrong_passcode = torch.tensor(0.3) |
|
|
|
try: |
|
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode) |
|
except ValueError as e: |
|
print(e) |
|
|
|
|
|
net = WealthTransferNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
similarity_matrix = cosine_similarity(interests) |
|
|
|
|
|
threshold = 0.8 |
|
similar_pairs = np.argwhere(similarity_matrix > threshold) |
|
|
|
|
|
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]] |
|
|
|
|
|
for pair in similar_pairs: |
|
consumer_a, consumer_b = pair |
|
|
|
|
|
wealth_a = wealth_data[consumer_a] |
|
wealth_b = wealth_data[consumer_b] |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
transferred_wealth_a = net(wealth_a) |
|
transferred_wealth_b = net(wealth_b) |
|
|
|
|
|
loss_a_to_b = criterion(transferred_wealth_a, wealth_b) |
|
loss_b_to_a = criterion(transferred_wealth_b, wealth_a) |
|
total_loss = loss_a_to_b + loss_b_to_a |
|
|
|
total_loss.backward() |
|
optimizer.step() |
|
|
|
|
|
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix) |
|
|
|
|
|
plt.figure(figsize=(8, 6)) |
|
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest') |
|
plt.colorbar(label='Cosine Similarity') |
|
plt.title("FortuneArch") |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import time |
|
import numpy as np |
|
|
|
|
|
num_receivers = 5 |
|
|
|
|
|
data_packet_size = 256 |
|
|
|
|
|
def generate_data_packet(size): |
|
return torch.rand(size) |
|
|
|
|
|
class MobileReceiver(nn.Module): |
|
def __init__(self): |
|
super(MobileReceiver, self).__init__() |
|
self.fc1 = nn.Linear(data_packet_size, data_packet_size) |
|
|
|
def forward(self, data): |
|
processed_data = torch.relu(self.fc1(data)) |
|
return processed_data |
|
|
|
|
|
receivers = [MobileReceiver() for _ in range(num_receivers)] |
|
|
|
|
|
def transmit_data_to_receivers(data_packet, receivers): |
|
received_data = [] |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
for receiver in receivers: |
|
received_packet = receiver(data_packet) |
|
received_data.append(received_packet) |
|
|
|
|
|
end_time = time.time() |
|
|
|
transmission_time = end_time - start_time |
|
print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds") |
|
|
|
return received_data |
|
|
|
|
|
data_packet = generate_data_packet(data_packet_size) |
|
|
|
|
|
received_data = transmit_data_to_receivers(data_packet, receivers) |
|
|
|
|
|
print(f"Original Data Packet (Sample):\n {data_packet[:5]}") |
|
print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}") |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class BankAccount: |
|
def __init__(self, account_number, balance=0.0): |
|
self.account_number = account_number |
|
self.balance = balance |
|
|
|
def deposit(self, amount): |
|
self.balance += amount |
|
|
|
def get_balance(self): |
|
return self.balance |
|
|
|
|
|
class VPNLayer: |
|
def __init__(self, encryption_key): |
|
self.encryption_key = encryption_key |
|
self.data_storage = {} |
|
|
|
def encrypt_data(self, data): |
|
|
|
encrypted_data = data * torch.sin(self.encryption_key) |
|
return encrypted_data |
|
|
|
def decrypt_data(self, encrypted_data, passcode): |
|
|
|
if passcode == self.encryption_key: |
|
decrypted_data = encrypted_data / torch.sin(self.encryption_key) |
|
return decrypted_data |
|
else: |
|
raise ValueError("Invalid Passcode! Access Denied.") |
|
|
|
def store_data(self, data, consumer_id): |
|
encrypted_data = self.encrypt_data(data) |
|
self.data_storage[consumer_id] = encrypted_data |
|
|
|
def retrieve_data(self, consumer_id, passcode): |
|
if consumer_id in self.data_storage: |
|
return self.decrypt_data(self.data_storage[consumer_id], passcode) |
|
else: |
|
raise ValueError("Consumer ID not found!") |
|
|
|
|
|
def generate_wealth_waveform(size, amplitude, frequency, phase): |
|
t = torch.linspace(0, 2 * np.pi, size) |
|
waveform = amplitude * torch.sin(frequency * t + phase) |
|
return waveform |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(1, 1) |
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
|
|
def transfer_wealth(waveform, target_account): |
|
|
|
wealth_amount = torch.sum(waveform[waveform > 0]).item() |
|
|
|
|
|
net = WealthTransferNet() |
|
|
|
|
|
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
optimizer = optim.SGD(net.parameters(), lr=0.01) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
output = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
target_account.deposit(wealth_amount) |
|
|
|
return wealth_amount |
|
|
|
|
|
class InfraredSignal: |
|
def __init__(self, waveform): |
|
self.waveform = waveform |
|
|
|
def transmit(self): |
|
|
|
print("Transmitting infrared signal...") |
|
return self.waveform |
|
|
|
|
|
class SignalReceiver: |
|
def __init__(self): |
|
self.received_data = None |
|
|
|
def receive(self, signal): |
|
print("Receiving signal...") |
|
self.received_data = signal |
|
print("Signal received.") |
|
|
|
def decode(self): |
|
|
|
return self.received_data |
|
|
|
|
|
waveform_size = 1000 |
|
amplitude = 1000.0 |
|
frequency = 2.0 |
|
phase = 0.0 |
|
|
|
|
|
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase) |
|
|
|
|
|
target_account = BankAccount(account_number="1234567890") |
|
|
|
|
|
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) |
|
|
|
|
|
consumer_id = "consumer_001" |
|
vpn_layer.store_data(wealth_waveform, consumer_id) |
|
|
|
|
|
passcode = torch.tensor(0.5) |
|
|
|
try: |
|
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) |
|
|
|
|
|
infrared_signal = InfraredSignal(retrieved_waveform) |
|
|
|
|
|
transmitted_signal = infrared_signal.transmit() |
|
|
|
|
|
signal_receiver = SignalReceiver() |
|
signal_receiver.receive(transmitted_signal) |
|
|
|
|
|
decoded_waveform = signal_receiver.decode() |
|
|
|
|
|
transferred_amount = transfer_wealth(decoded_waveform, target_account) |
|
|
|
|
|
print(f"Transferred Amount: ${transferred_amount:.2f}") |
|
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") |
|
|
|
|
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform') |
|
plt.title("Wealth Waveform Representation") |
|
plt.xlabel("Time") |
|
plt.ylabel("Wealth Amount") |
|
plt.legend() |
|
plt.grid() |
|
plt.show() |
|
|
|
except ValueError as e: |
|
print(e) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class BankAccount: |
|
def __init__(self, account_number, balance=0.0): |
|
self.account_number = account_number |
|
self.balance = balance |
|
|
|
def deposit(self, amount): |
|
self.balance += amount |
|
|
|
def get_balance(self): |
|
return self.balance |
|
|
|
|
|
class VPNLayer: |
|
def __init__(self, encryption_key): |
|
self.encryption_key = encryption_key |
|
self.data_storage = {} |
|
|
|
def encrypt_data(self, data): |
|
|
|
encrypted_data = data * torch.sin(self.encryption_key) |
|
return encrypted_data |
|
|
|
def decrypt_data(self, encrypted_data, passcode): |
|
|
|
if passcode == self.encryption_key: |
|
decrypted_data = encrypted_data / torch.sin(self.encryption_key) |
|
return decrypted_data |
|
else: |
|
raise ValueError("Invalid Passcode! Access Denied.") |
|
|
|
def store_data(self, data, consumer_id): |
|
encrypted_data = self.encrypt_data(data) |
|
self.data_storage[consumer_id] = encrypted_data |
|
|
|
def retrieve_data(self, consumer_id, passcode): |
|
if consumer_id in self.data_storage: |
|
return self.decrypt_data(self.data_storage[consumer_id], passcode) |
|
else: |
|
raise ValueError("Consumer ID not found!") |
|
|
|
|
|
def generate_wealth_waveform(size, amplitude, frequency, phase): |
|
t = torch.linspace(0, 2 * np.pi, size) |
|
waveform = amplitude * torch.sin(frequency * t + phase) |
|
return waveform |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(1, 1) |
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
|
|
def transfer_wealth(waveform, target_account): |
|
|
|
wealth_amount = torch.sum(waveform[waveform > 0]).item() |
|
|
|
|
|
net = WealthTransferNet() |
|
|
|
|
|
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
optimizer = optim.SGD(net.parameters(), lr=0.01) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
output = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
target_account.deposit(wealth_amount) |
|
|
|
return wealth_amount |
|
|
|
|
|
class InfraredSignal: |
|
def __init__(self, waveform): |
|
self.waveform = waveform |
|
|
|
def transmit(self): |
|
|
|
print("Transmitting infrared signal...") |
|
return self.waveform |
|
|
|
|
|
class SignalReceiver: |
|
def __init__(self): |
|
self.received_data = None |
|
|
|
def receive(self, signal): |
|
print("Receiving signal...") |
|
self.received_data = signal |
|
print("Signal received.") |
|
|
|
def decode(self): |
|
|
|
return self.received_data |
|
|
|
|
|
waveform_size = 1000 |
|
amplitude = 1000.0 |
|
frequency = 2.0 |
|
phase = 0.0 |
|
|
|
|
|
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase) |
|
|
|
|
|
target_account = BankAccount(account_number="1234567890") |
|
|
|
|
|
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) |
|
|
|
|
|
consumer_id = "consumer_001" |
|
vpn_layer.store_data(wealth_waveform, consumer_id) |
|
|
|
|
|
passcode = torch.tensor(0.5) |
|
|
|
try: |
|
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) |
|
|
|
|
|
infrared_signal = InfraredSignal(retrieved_waveform) |
|
|
|
|
|
transmitted_signal = infrared_signal.transmit() |
|
|
|
|
|
signal_receiver = SignalReceiver() |
|
signal_receiver.receive(transmitted_signal) |
|
|
|
|
|
decoded_waveform = signal_receiver.decode() |
|
|
|
|
|
transferred_amount = transfer_wealth(decoded_waveform, target_account) |
|
|
|
|
|
print(f"Transferred Amount: ${transferred_amount:.2f}") |
|
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") |
|
|
|
|
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue') |
|
plt.title("Wealth Waveform Representation") |
|
plt.xlabel("Sample Number") |
|
plt.ylabel("Wealth Amount") |
|
plt.legend() |
|
plt.grid() |
|
plt.show() |
|
|
|
except ValueError as e: |
|
print(e) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class BankAccount: |
|
def __init__(self, account_number, balance=0.0): |
|
self.account_number = account_number |
|
self.balance = balance |
|
|
|
def deposit(self, amount): |
|
self.balance += amount |
|
|
|
def get_balance(self): |
|
return self.balance |
|
|
|
|
|
class VPNLayer: |
|
def __init__(self, encryption_key): |
|
self.encryption_key = encryption_key |
|
self.data_storage = {} |
|
|
|
def encrypt_data(self, data): |
|
|
|
encrypted_data = data * torch.sin(self.encryption_key) |
|
return encrypted_data |
|
|
|
def decrypt_data(self, encrypted_data, passcode): |
|
|
|
if passcode == self.encryption_key: |
|
decrypted_data = encrypted_data / torch.sin(self.encryption_key) |
|
return decrypted_data |
|
else: |
|
raise ValueError("Invalid Passcode! Access Denied.") |
|
|
|
def store_data(self, data, consumer_id): |
|
encrypted_data = self.encrypt_data(data) |
|
self.data_storage[consumer_id] = encrypted_data |
|
|
|
def retrieve_data(self, consumer_id, passcode): |
|
if consumer_id in self.data_storage: |
|
return self.decrypt_data(self.data_storage[consumer_id], passcode) |
|
else: |
|
raise ValueError("Consumer ID not found!") |
|
|
|
|
|
def generate_wealth_waveform(size, frequency, phase): |
|
random_amplitude = torch.rand(1).item() * 1000 |
|
t = torch.linspace(0, 2 * np.pi, size) |
|
waveform = random_amplitude * torch.sin(frequency * t + phase) |
|
return waveform, random_amplitude |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(1, 1) |
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
|
|
def transfer_wealth(waveform, target_account): |
|
|
|
wealth_amount = torch.sum(waveform[waveform > 0]).item() |
|
|
|
|
|
net = WealthTransferNet() |
|
|
|
|
|
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
optimizer = optim.SGD(net.parameters(), lr=0.01) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
output = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
target_account.deposit(wealth_amount) |
|
|
|
return wealth_amount |
|
|
|
|
|
class InfraredSignal: |
|
def __init__(self, waveform): |
|
self.waveform = waveform |
|
|
|
def transmit(self): |
|
|
|
print("Transmitting infrared signal...") |
|
return self.waveform |
|
|
|
|
|
class SignalReceiver: |
|
def __init__(self): |
|
self.received_data = None |
|
|
|
def receive(self, signal): |
|
print("Receiving signal...") |
|
self.received_data = signal |
|
print("Signal received.") |
|
|
|
def decode(self): |
|
|
|
return self.received_data |
|
|
|
|
|
waveform_size = 1000 |
|
frequency = 2.0 |
|
phase = 0.0 |
|
|
|
|
|
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase) |
|
|
|
|
|
target_account = BankAccount(account_number="1234567890") |
|
|
|
|
|
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) |
|
|
|
|
|
consumer_id = "consumer_001" |
|
vpn_layer.store_data(wealth_waveform, consumer_id) |
|
|
|
|
|
passcode = torch.tensor(0.5) |
|
|
|
try: |
|
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) |
|
|
|
|
|
infrared_signal = InfraredSignal(retrieved_waveform) |
|
|
|
|
|
transmitted_signal = infrared_signal.transmit() |
|
|
|
|
|
signal_receiver = SignalReceiver() |
|
signal_receiver.receive(transmitted_signal) |
|
|
|
|
|
decoded_waveform = signal_receiver.decode() |
|
|
|
|
|
transferred_amount = transfer_wealth(decoded_waveform, target_account) |
|
|
|
|
|
print(f"Transferred Amount: ${transferred_amount:.2f}") |
|
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") |
|
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}") |
|
|
|
|
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue') |
|
plt.title("Wealth Waveform Representation") |
|
plt.xlabel("Number") |
|
plt.ylabel("Amount") |
|
plt.legend() |
|
plt.grid() |
|
plt.show() |
|
|
|
except ValueError as e: |
|
print(e) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import hashlib |
|
|
|
|
|
class BankAccount: |
|
def __init__(self, account_number, balance=0.0): |
|
self.account_number = account_number |
|
self.balance = balance |
|
|
|
def deposit(self, amount): |
|
self.balance += amount |
|
|
|
def get_balance(self): |
|
return self.balance |
|
|
|
|
|
class VPNLayer: |
|
def __init__(self, encryption_key): |
|
self.encryption_key = encryption_key |
|
self.data_storage = {} |
|
self.hash_storage = {} |
|
|
|
def encrypt_data(self, data): |
|
|
|
encrypted_data = data * torch.sin(self.encryption_key) |
|
return encrypted_data |
|
|
|
def decrypt_data(self, encrypted_data, passcode): |
|
|
|
if passcode == self.encryption_key: |
|
decrypted_data = encrypted_data / torch.sin(self.encryption_key) |
|
return decrypted_data |
|
else: |
|
raise ValueError("Invalid Passcode! Access Denied.") |
|
|
|
def store_data(self, data, consumer_id): |
|
encrypted_data = self.encrypt_data(data) |
|
|
|
self.data_storage[consumer_id] = encrypted_data |
|
|
|
|
|
data_hash = hashlib.sha256(data.numpy()).hexdigest() |
|
self.hash_storage[consumer_id] = data_hash |
|
|
|
def retrieve_data(self, consumer_id, passcode): |
|
if consumer_id in self.data_storage: |
|
encrypted_data = self.data_storage[consumer_id] |
|
decrypted_data = self.decrypt_data(encrypted_data, passcode) |
|
|
|
original_hash = self.hash_storage[consumer_id] |
|
current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest() |
|
if original_hash == current_hash: |
|
return decrypted_data |
|
else: |
|
raise ValueError("Data integrity compromised!") |
|
else: |
|
raise ValueError("Consumer ID not found!") |
|
|
|
|
|
def generate_wealth_waveform(size, frequency, phase): |
|
random_amplitude = torch.rand(1).item() * 1000 |
|
t = torch.linspace(0, 2 * np.pi, size) |
|
waveform = random_amplitude * torch.sin(frequency * t + phase) |
|
return waveform, random_amplitude |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(1, 1) |
|
|
|
def forward(self, x): |
|
return self.fc1(x) |
|
|
|
|
|
def transfer_wealth(waveform, target_account): |
|
|
|
wealth_amount = torch.sum(waveform[waveform > 0]).item() |
|
|
|
|
|
net = WealthTransferNet() |
|
|
|
|
|
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
optimizer = optim.SGD(net.parameters(), lr=0.01) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32) |
|
|
|
|
|
for epoch in range(100): |
|
optimizer.zero_grad() |
|
output = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
target_account.deposit(wealth_amount) |
|
|
|
return wealth_amount |
|
|
|
|
|
class InfraredSignal: |
|
def __init__(self, waveform): |
|
self.waveform = waveform |
|
|
|
def transmit(self): |
|
|
|
print("Transmitting infrared signal...") |
|
return self.waveform |
|
|
|
|
|
class SignalReceiver: |
|
def __init__(self): |
|
self.received_data = None |
|
|
|
def receive(self, signal): |
|
print("Receiving signal...") |
|
self.received_data = signal |
|
print("Signal received.") |
|
|
|
def decode(self): |
|
|
|
return self.received_data |
|
|
|
|
|
waveform_size = 1000 |
|
frequency = 2.0 |
|
phase = 0.0 |
|
|
|
|
|
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase) |
|
|
|
|
|
target_account = BankAccount(account_number="1234567890") |
|
|
|
|
|
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5)) |
|
|
|
|
|
consumer_id = "consumer_001" |
|
vpn_layer.store_data(wealth_waveform, consumer_id) |
|
|
|
|
|
passcode = torch.tensor(0.5) |
|
|
|
try: |
|
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode) |
|
|
|
|
|
infrared_signal = InfraredSignal(retrieved_waveform) |
|
|
|
|
|
transmitted_signal = infrared_signal.transmit() |
|
|
|
|
|
signal_receiver = SignalReceiver() |
|
signal_receiver.receive(transmitted_signal) |
|
|
|
|
|
decoded_waveform = signal_receiver.decode() |
|
|
|
|
|
transferred_amount = transfer_wealth(decoded_waveform, target_account) |
|
|
|
|
|
print(f"Transferred Amount: ${transferred_amount:.2f}") |
|
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}") |
|
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}") |
|
|
|
|
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue') |
|
plt.title("Wealth Waveform Representation") |
|
plt.xlabel("Sample Number") |
|
plt.ylabel("Wealth Amount") |
|
plt.legend() |
|
plt.grid() |
|
plt.show() |
|
|
|
except ValueError as e: |
|
print(e) |