|
|
|
"""WealthWaveTransfer |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1XkEAYjoh8WGeoRnmdkgiNTM-IwU4PC__ |
|
""" |
|
|
|
pip install torch torchvision |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
np.random.seed(42) |
|
num_samples = 1000 |
|
|
|
|
|
age = np.random.randint(18, 70, size=num_samples) |
|
income = np.random.normal(50000, 15000, size=num_samples) |
|
investments = np.random.normal(10000, 5000, size=num_samples) |
|
|
|
|
|
wealth = 0.4 * age + 0.5 * (income / 1000) + 0.3 * (investments / 1000) + np.random.normal(0, 5, size=num_samples) |
|
|
|
|
|
X = torch.tensor(np.column_stack((age, income, investments)), dtype=torch.float32) |
|
y = torch.tensor(wealth, dtype=torch.float32).view(-1, 1) |
|
|
|
import torch.nn as nn |
|
import torch.optim as optim |
|
|
|
class WealthModel(nn.Module): |
|
def __init__(self): |
|
super(WealthModel, self).__init__() |
|
self.fc1 = nn.Linear(3, 64) |
|
self.fc2 = nn.Linear(64, 32) |
|
self.fc3 = nn.Linear(32, 1) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
model = WealthModel() |
|
|
|
|
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
num_epochs = 100 |
|
|
|
|
|
for epoch in range(num_epochs): |
|
model.train() |
|
|
|
|
|
outputs = model(X) |
|
loss = criterion(outputs, y) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if (epoch+1) % 10 == 0: |
|
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
predicted = model(X) |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5) |
|
plt.xlabel('True Wealth') |
|
plt.ylabel('Predicted Wealth') |
|
plt.title('True vs Predicted Wealth') |
|
plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red') |
|
plt.show() |
|
|
|
class ObfuscationLayer(nn.Module): |
|
def __init__(self): |
|
super(ObfuscationLayer, self).__init__() |
|
|
|
def forward(self, x): |
|
|
|
noise = torch.normal(0, 0.1, x.size()).to(x.device) |
|
return x + noise |
|
|
|
class EnhancedWealthModel(nn.Module): |
|
def __init__(self): |
|
super(EnhancedWealthModel, self).__init__() |
|
self.obfuscation = ObfuscationLayer() |
|
self.fc1 = nn.Linear(3, 128) |
|
self.fc2 = nn.Linear(128, 64) |
|
self.fc3 = nn.Linear(64, 32) |
|
self.fc4 = nn.Linear(32, 1) |
|
|
|
def forward(self, x): |
|
x = self.obfuscation(x) |
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
x = torch.relu(self.fc3(x)) |
|
x = self.fc4(x) |
|
return x |
|
|
|
model = EnhancedWealthModel() |
|
|
|
|
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
num_epochs = 100 |
|
|
|
|
|
for epoch in range(num_epochs): |
|
model.train() |
|
|
|
|
|
outputs = model(X) |
|
loss = criterion(outputs, y) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if (epoch + 1) % 10 == 0: |
|
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}') |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
predicted = model(X) |
|
|
|
|
|
plt.scatter(y.numpy(), predicted.numpy(), alpha=0.5) |
|
plt.xlabel('True Wealth') |
|
plt.ylabel('Predicted Wealth') |
|
plt.title('True vs Predicted Wealth with Obfuscation Layer') |
|
plt.plot([y.min(), y.max()], [y.min(), y.max()], '--', color='red') |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
grid_size = 20 |
|
|
|
|
|
def generate_wealth_waveform(grid_size): |
|
x = np.linspace(0, 2 * np.pi, grid_size) |
|
wealth_waveform = np.sin(x) |
|
return wealth_waveform |
|
|
|
|
|
wealth_waveform = generate_wealth_waveform(grid_size) |
|
wealth_data = np.tile(wealth_waveform, (grid_size, 1)) |
|
|
|
|
|
wealth_data = torch.tensor(wealth_data, dtype=torch.float32) |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(grid_size * grid_size, 128) |
|
self.fc2 = nn.Linear(128, grid_size * grid_size) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
net = WealthTransferNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
target_account = torch.zeros((grid_size, grid_size)) |
|
target_account[-5:, -5:] = 1 |
|
|
|
|
|
input_data = wealth_data.view(-1) |
|
target_data = target_account.view(-1) |
|
|
|
|
|
epochs = 500 |
|
for epoch in range(epochs): |
|
optimizer.zero_grad() |
|
output = net(input_data) |
|
loss = criterion(output, target_data) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
output_grid = output.detach().view(grid_size, grid_size) |
|
|
|
|
|
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) |
|
axes[0].imshow(wealth_data, cmap='viridis') |
|
axes[0].set_title('Original Wealth Waveform') |
|
axes[1].imshow(target_account, cmap='viridis') |
|
axes[1].set_title('Target Account Location') |
|
axes[2].imshow(output_grid, cmap='viridis') |
|
axes[2].set_title('Transferred Wealth to Target') |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
waveform_size = 100 |
|
|
|
|
|
def generate_wealth_waveform(waveform_size): |
|
x = np.linspace(0, 2 * np.pi, waveform_size) |
|
wealth_waveform = np.sin(x) |
|
return wealth_waveform |
|
|
|
|
|
wealth_waveform = generate_wealth_waveform(waveform_size) |
|
wealth_data = torch.tensor(wealth_waveform, dtype=torch.float32) |
|
|
|
|
|
class WealthTransferNet(nn.Module): |
|
def __init__(self): |
|
super(WealthTransferNet, self).__init__() |
|
self.fc1 = nn.Linear(waveform_size, 64) |
|
self.fc2 = nn.Linear(64, waveform_size) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
net = WealthTransferNet() |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(net.parameters(), lr=0.01) |
|
|
|
|
|
target_account = torch.zeros(waveform_size) |
|
target_account[-10:] = 1 |
|
|
|
|
|
epochs = 1000 |
|
for epoch in range(epochs): |
|
optimizer.zero_grad() |
|
output = net(wealth_data) |
|
loss = criterion(output, target_account) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
output_waveform = output.detach().numpy() |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 5)) |
|
ax.plot(wealth_data.numpy(), label="Original Wealth Waveform", linestyle="--") |
|
ax.plot(target_account.numpy(), label="Target Account", linestyle=":") |
|
ax.plot(output_waveform, label="Transferred Wealth Waveform") |
|
ax.set_title('WealthWaveTransfer') |
|
ax.legend() |
|
plt.show() |