ashish-001's picture
Update README.md
e8ebcc6 verified
metadata
license: apache-2.0
datasets:
  - SetFit/amazon_reviews_multi_en
base_model:
  - google-bert/bert-base-uncased
metrics:
  - accuracy
pipeline_tag: text-classification
This repository contains a fine-tuned BERT model for sentiment classification of Amazon product reviews The model classifies a given review into two classes: Positive and Negative

Model Overview

Figure 1: Confusion matrix for test data image/png

Figure 2: Confusion matrix for validation data image/png

How to Use the Model

Below is an example of how to load and use the model for sentiment classification:

from transformers import BertTokenizer, BertForSequenceClassification
import torch

# Load the tokenizer and model
tokenizer = BertTokenizer.from_pretrained(
    "ashish-001/Bert-Amazon-review-sentiment-classifier")
model = BertForSequenceClassification.from_pretrained(
    "ashish-001/Bert-Amazon-review-sentiment-classifier")

# Example usage
text = "This product is amazing!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
sentiment = torch.argmax(logits, dim=1).item()

print(f"Predicted sentiment: {'Positive' if sentiment else 'Negative'}")