|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- SetFit/amazon_reviews_multi_en |
|
base_model: |
|
- google-bert/bert-base-uncased |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
|
|
|
|
|
|
This repository contains a fine-tuned BERT model for sentiment classification of Amazon product reviews The model classifies a given review into two classes: Positive and Negative |
|
|
|
--- |
|
|
|
## **Model Overview** |
|
- **Base Model**: [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) |
|
- **Dataset**: [SetFit/amazon_reviews_multi_en](https://huggingface.co/datasets/SetFit/amazon_reviews_multi_en), |
|
- **Classes**: Binary classification (`Positive`, `Negative`) |
|
- **Performance**: |
|
- **Test Accuracy**: 89% |
|
- **Validation Accuracy**: 89% |
|
|
|
*Figure 1: Confusion matrix for test data* |
|
 |
|
|
|
*Figure 2: Confusion matrix for validation data* |
|
 |
|
|
|
### How to Use the Model |
|
|
|
Below is an example of how to load and use the model for sentiment classification: |
|
|
|
```python |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
import torch |
|
|
|
# Load the tokenizer and model |
|
tokenizer = BertTokenizer.from_pretrained( |
|
"ashish-001/Bert-Amazon-review-sentiment-classifier") |
|
model = BertForSequenceClassification.from_pretrained( |
|
"ashish-001/Bert-Amazon-review-sentiment-classifier") |
|
|
|
# Example usage |
|
text = "This product is amazing!" |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
sentiment = torch.argmax(logits, dim=1).item() |
|
|
|
print(f"Predicted sentiment: {'Positive' if sentiment else 'Negative'}") |
|
|
|
|
|
|
|
|
|
|