|
--- |
|
library_name: transformers |
|
language: |
|
- bem |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- BIG_C/Bemba |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: facebook/mms-1b-all |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: BIG_C |
|
type: BIG_C/Bemba |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.4999571146753581 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# facebook/mms-1b-all |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIG_C dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4631 |
|
- Model Preparation Time: 0.0111 |
|
- Wer: 0.5000 |
|
- Cer: 0.0994 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |
|
|:-------------:|:-------:|:----:|:---------------:|:----------------------:|:------:|:------:| |
|
| 15.2119 | 0.9756 | 15 | 14.3754 | 0.0111 | 1.0 | 2.8114 | |
|
| 13.7154 | 1.9756 | 30 | 11.9551 | 0.0111 | 1.0 | 1.3068 | |
|
| 10.7174 | 2.9756 | 45 | 8.7638 | 0.0111 | 1.0 | 0.8494 | |
|
| 8.1163 | 3.9756 | 60 | 7.4602 | 0.0111 | 1.0 | 0.9419 | |
|
| 7.3697 | 4.9756 | 75 | 7.0681 | 0.0111 | 1.0 | 0.9794 | |
|
| 6.7473 | 5.9756 | 90 | 6.4844 | 0.0111 | 1.0 | 0.9688 | |
|
| 4.9931 | 6.9756 | 105 | 3.0213 | 0.0111 | 0.9998 | 0.9275 | |
|
| 2.4759 | 7.9756 | 120 | 1.4651 | 0.0111 | 0.9627 | 0.3229 | |
|
| 1.1333 | 8.9756 | 135 | 0.8066 | 0.0111 | 0.6741 | 0.1628 | |
|
| 0.857 | 9.9756 | 150 | 0.7021 | 0.0111 | 0.6387 | 0.1507 | |
|
| 0.7852 | 10.9756 | 165 | 0.6550 | 0.0111 | 0.6045 | 0.1409 | |
|
| 0.7432 | 11.9756 | 180 | 0.6396 | 0.0111 | 0.5860 | 0.1358 | |
|
| 0.7508 | 12.9756 | 195 | 0.6367 | 0.0111 | 0.5822 | 0.1336 | |
|
| 0.7122 | 13.9756 | 210 | 0.6270 | 0.0111 | 0.5778 | 0.1333 | |
|
| 0.7009 | 14.9756 | 225 | 0.6258 | 0.0111 | 0.5638 | 0.1301 | |
|
| 0.699 | 15.9756 | 240 | 0.6172 | 0.0111 | 0.5699 | 0.1318 | |
|
| 0.688 | 16.9756 | 255 | 0.6161 | 0.0111 | 0.5710 | 0.1315 | |
|
| 0.6861 | 17.9756 | 270 | 0.6167 | 0.0111 | 0.5727 | 0.1319 | |
|
| 0.675 | 18.9756 | 285 | 0.6138 | 0.0111 | 0.5631 | 0.1290 | |
|
| 0.6587 | 19.9756 | 300 | 0.6150 | 0.0111 | 0.5619 | 0.1295 | |
|
| 0.6416 | 20.9756 | 315 | 0.6127 | 0.0111 | 0.5574 | 0.1289 | |
|
| 0.6236 | 21.9756 | 330 | 0.6158 | 0.0111 | 0.5612 | 0.1296 | |
|
| 0.6339 | 22.9756 | 345 | 0.6235 | 0.0111 | 0.5621 | 0.1316 | |
|
| 0.6192 | 23.9756 | 360 | 0.6208 | 0.0111 | 0.5574 | 0.1305 | |
|
| 0.5872 | 24.9756 | 375 | 0.6286 | 0.0111 | 0.5604 | 0.1316 | |
|
| 0.5714 | 25.9756 | 390 | 0.6294 | 0.0111 | 0.5797 | 0.1374 | |
|
| 0.5822 | 26.9756 | 405 | 0.6306 | 0.0111 | 0.5786 | 0.1368 | |
|
| 0.5654 | 27.9756 | 420 | 0.6298 | 0.0111 | 0.5565 | 0.1296 | |
|
| 0.559 | 28.9756 | 435 | 0.6280 | 0.0111 | 0.5597 | 0.1299 | |
|
| 0.5443 | 29.9756 | 450 | 0.6313 | 0.0111 | 0.5576 | 0.1296 | |
|
| 0.5395 | 30.9756 | 465 | 0.6402 | 0.0111 | 0.5523 | 0.1277 | |
|
| 0.5422 | 31.9756 | 480 | 0.6380 | 0.0111 | 0.5445 | 0.1270 | |
|
| 0.5318 | 32.9756 | 495 | 0.6383 | 0.0111 | 0.5440 | 0.1262 | |
|
| 0.5233 | 33.9756 | 510 | 0.6411 | 0.0111 | 0.5411 | 0.1266 | |
|
| 0.5202 | 34.9756 | 525 | 0.6405 | 0.0111 | 0.5432 | 0.1271 | |
|
| 0.5093 | 35.9756 | 540 | 0.6513 | 0.0111 | 0.5468 | 0.1271 | |
|
| 0.501 | 36.9756 | 555 | 0.6505 | 0.0111 | 0.5461 | 0.1277 | |
|
| 0.5009 | 37.9756 | 570 | 0.6491 | 0.0111 | 0.5472 | 0.1277 | |
|
| 0.4849 | 38.9756 | 585 | 0.6738 | 0.0111 | 0.5334 | 0.1239 | |
|
| 0.4823 | 39.9756 | 600 | 0.6644 | 0.0111 | 0.5387 | 0.1260 | |
|
| 0.4826 | 40.9756 | 615 | 0.6685 | 0.0111 | 0.5364 | 0.1257 | |
|
| 0.484 | 41.9756 | 630 | 0.6725 | 0.0111 | 0.5360 | 0.1249 | |
|
| 0.4787 | 42.9756 | 645 | 0.6603 | 0.0111 | 0.5417 | 0.1259 | |
|
| 0.4711 | 43.9756 | 660 | 0.6696 | 0.0111 | 0.5638 | 0.1327 | |
|
| 0.4722 | 44.9756 | 675 | 0.6652 | 0.0111 | 0.5385 | 0.1248 | |
|
| 0.4496 | 45.9756 | 690 | 0.6620 | 0.0111 | 0.5404 | 0.1266 | |
|
| 0.4453 | 46.9756 | 705 | 0.6950 | 0.0111 | 0.5321 | 0.1248 | |
|
| 0.4495 | 47.9756 | 720 | 0.7069 | 0.0111 | 0.5290 | 0.1235 | |
|
| 0.4436 | 48.9756 | 735 | 0.6966 | 0.0111 | 0.5328 | 0.1244 | |
|
| 0.438 | 49.9756 | 750 | 0.6767 | 0.0111 | 0.5351 | 0.1277 | |
|
| 0.4334 | 50.9756 | 765 | 0.6908 | 0.0111 | 0.5451 | 0.1282 | |
|
| 0.4227 | 51.9756 | 780 | 0.7179 | 0.0111 | 0.5383 | 0.1260 | |
|
| 0.4226 | 52.9756 | 795 | 0.7106 | 0.0111 | 0.5377 | 0.1254 | |
|
| 0.4182 | 53.9756 | 810 | 0.7017 | 0.0111 | 0.5495 | 0.1306 | |
|
| 0.4153 | 54.9756 | 825 | 0.6970 | 0.0111 | 0.5413 | 0.1295 | |
|
| 0.4071 | 55.9756 | 840 | 0.7151 | 0.0111 | 0.5394 | 0.1269 | |
|
| 0.4065 | 56.9756 | 855 | 0.7126 | 0.0111 | 0.5394 | 0.1264 | |
|
| 0.4015 | 57.9756 | 870 | 0.7199 | 0.0111 | 0.5445 | 0.1279 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0.dev0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.1 |
|
|