Beijuka's picture
End of training
c89cfde verified
metadata
library_name: transformers
language:
  - sn
license: cc-by-nc-4.0
base_model: facebook/mms-300m
tags:
  - generated_from_trainer
datasets:
  - DigitalUmuganda_Afrivoice/Shona
metrics:
  - wer
model-index:
  - name: facebook/mms-300m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DigitalUmuganda
          type: DigitalUmuganda_Afrivoice/Shona
        metrics:
          - name: Wer
            type: wer
            value: 0.4128480489819719

facebook/mms-300m

This model is a fine-tuned version of facebook/mms-300m on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7396
  • Wer: 0.4128
  • Cer: 0.0953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
23.8246 0.9954 109 2.9644 1.0 1.0
11.6666 2.0 219 2.8975 1.0 1.0
11.5956 2.9954 328 2.8467 1.0 1.0
10.3096 4.0 438 1.9758 1.0 0.6253
5.5486 4.9954 547 0.7431 0.9025 0.2232
2.263 6.0 657 0.3758 0.5049 0.0977
1.4016 6.9954 766 0.3167 0.4258 0.0805
1.0646 8.0 876 0.2821 0.3744 0.0702
0.8883 8.9954 985 0.2754 0.3581 0.0679
0.7279 10.0 1095 0.2653 0.3543 0.0669
0.644 10.9954 1204 0.2632 0.3417 0.0610
0.5561 12.0 1314 0.2647 0.3336 0.0597
0.5029 12.9954 1423 0.2868 0.3368 0.0614
0.434 14.0 1533 0.2981 0.3239 0.0583
0.3766 14.9954 1642 0.2986 0.3327 0.0604
0.3356 16.0 1752 0.3170 0.3150 0.0562
0.3046 16.9954 1861 0.3350 0.3278 0.0579
0.2801 18.0 1971 0.3359 0.3358 0.0598
0.2601 18.9954 2080 0.3392 0.3341 0.0599
0.2339 20.0 2190 0.3526 0.3282 0.0584
0.2175 20.9954 2299 0.3517 0.3317 0.0582
0.2031 22.0 2409 0.3547 0.3275 0.0564
0.197 22.9954 2518 0.3688 0.3164 0.0552
0.1751 24.0 2628 0.3724 0.3212 0.0570
0.1738 24.9954 2737 0.3778 0.3035 0.0539
0.1656 26.0 2847 0.3946 0.3120 0.0547
0.163 26.9954 2956 0.3770 0.3089 0.0542
0.1484 28.0 3066 0.3871 0.3151 0.0568
0.1452 28.9954 3175 0.3712 0.3038 0.0535
0.1335 30.0 3285 0.3989 0.3085 0.0544
0.1337 30.9954 3394 0.3880 0.3064 0.0543
0.126 32.0 3504 0.4123 0.3079 0.0540
0.1252 32.9954 3613 0.3959 0.3070 0.0544
0.1229 34.0 3723 0.3975 0.2989 0.0533
0.1198 34.9954 3832 0.4194 0.3020 0.0531
0.1136 36.0 3942 0.3916 0.3056 0.0534
0.1186 36.9954 4051 0.3939 0.3040 0.0535
0.1078 38.0 4161 0.4042 0.3011 0.0532
0.108 38.9954 4270 0.4044 0.3000 0.0526
0.1011 40.0 4380 0.4309 0.2997 0.0522
0.106 40.9954 4489 0.4245 0.2941 0.0517
0.0994 42.0 4599 0.4268 0.3059 0.0528
0.0982 42.9954 4708 0.4239 0.2996 0.0524
0.0956 44.0 4818 0.4175 0.2974 0.0525
0.0931 44.9954 4927 0.4677 0.2934 0.0518
0.0886 46.0 5037 0.4262 0.2979 0.0523
0.0874 46.9954 5146 0.4274 0.2927 0.0514
0.0882 48.0 5256 0.4230 0.2988 0.0524
0.0856 48.9954 5365 0.4169 0.2872 0.0505
0.0826 50.0 5475 0.4092 0.3034 0.0522
0.0828 50.9954 5584 0.4383 0.2869 0.0507
0.0798 52.0 5694 0.4201 0.2968 0.0512
0.0761 52.9954 5803 0.3999 0.2871 0.0498
0.0753 54.0 5913 0.4303 0.2914 0.0502
0.0743 54.9954 6022 0.4424 0.2937 0.0507
0.0788 56.0 6132 0.4214 0.2877 0.0495
0.0752 56.9954 6241 0.4293 0.2925 0.0507
0.0713 58.0 6351 0.4494 0.2919 0.0504
0.0693 58.9954 6460 0.4297 0.2882 0.0498

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1