|
--- |
|
library_name: transformers |
|
language: |
|
- sn |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- DigitalUmuganda_Afrivoice/Shona |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: facebook/mms-300m |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: DigitalUmuganda |
|
type: DigitalUmuganda_Afrivoice/Shona |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.4128480489819719 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# facebook/mms-300m |
|
|
|
This model is a fine-tuned version of [facebook/mms-300m](https://huggingface.co/facebook/mms-300m) on the DigitalUmuganda dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7396 |
|
- Wer: 0.4128 |
|
- Cer: 0.0953 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 150 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:| |
|
| 23.8246 | 0.9954 | 109 | 2.9644 | 1.0 | 1.0 | |
|
| 11.6666 | 2.0 | 219 | 2.8975 | 1.0 | 1.0 | |
|
| 11.5956 | 2.9954 | 328 | 2.8467 | 1.0 | 1.0 | |
|
| 10.3096 | 4.0 | 438 | 1.9758 | 1.0 | 0.6253 | |
|
| 5.5486 | 4.9954 | 547 | 0.7431 | 0.9025 | 0.2232 | |
|
| 2.263 | 6.0 | 657 | 0.3758 | 0.5049 | 0.0977 | |
|
| 1.4016 | 6.9954 | 766 | 0.3167 | 0.4258 | 0.0805 | |
|
| 1.0646 | 8.0 | 876 | 0.2821 | 0.3744 | 0.0702 | |
|
| 0.8883 | 8.9954 | 985 | 0.2754 | 0.3581 | 0.0679 | |
|
| 0.7279 | 10.0 | 1095 | 0.2653 | 0.3543 | 0.0669 | |
|
| 0.644 | 10.9954 | 1204 | 0.2632 | 0.3417 | 0.0610 | |
|
| 0.5561 | 12.0 | 1314 | 0.2647 | 0.3336 | 0.0597 | |
|
| 0.5029 | 12.9954 | 1423 | 0.2868 | 0.3368 | 0.0614 | |
|
| 0.434 | 14.0 | 1533 | 0.2981 | 0.3239 | 0.0583 | |
|
| 0.3766 | 14.9954 | 1642 | 0.2986 | 0.3327 | 0.0604 | |
|
| 0.3356 | 16.0 | 1752 | 0.3170 | 0.3150 | 0.0562 | |
|
| 0.3046 | 16.9954 | 1861 | 0.3350 | 0.3278 | 0.0579 | |
|
| 0.2801 | 18.0 | 1971 | 0.3359 | 0.3358 | 0.0598 | |
|
| 0.2601 | 18.9954 | 2080 | 0.3392 | 0.3341 | 0.0599 | |
|
| 0.2339 | 20.0 | 2190 | 0.3526 | 0.3282 | 0.0584 | |
|
| 0.2175 | 20.9954 | 2299 | 0.3517 | 0.3317 | 0.0582 | |
|
| 0.2031 | 22.0 | 2409 | 0.3547 | 0.3275 | 0.0564 | |
|
| 0.197 | 22.9954 | 2518 | 0.3688 | 0.3164 | 0.0552 | |
|
| 0.1751 | 24.0 | 2628 | 0.3724 | 0.3212 | 0.0570 | |
|
| 0.1738 | 24.9954 | 2737 | 0.3778 | 0.3035 | 0.0539 | |
|
| 0.1656 | 26.0 | 2847 | 0.3946 | 0.3120 | 0.0547 | |
|
| 0.163 | 26.9954 | 2956 | 0.3770 | 0.3089 | 0.0542 | |
|
| 0.1484 | 28.0 | 3066 | 0.3871 | 0.3151 | 0.0568 | |
|
| 0.1452 | 28.9954 | 3175 | 0.3712 | 0.3038 | 0.0535 | |
|
| 0.1335 | 30.0 | 3285 | 0.3989 | 0.3085 | 0.0544 | |
|
| 0.1337 | 30.9954 | 3394 | 0.3880 | 0.3064 | 0.0543 | |
|
| 0.126 | 32.0 | 3504 | 0.4123 | 0.3079 | 0.0540 | |
|
| 0.1252 | 32.9954 | 3613 | 0.3959 | 0.3070 | 0.0544 | |
|
| 0.1229 | 34.0 | 3723 | 0.3975 | 0.2989 | 0.0533 | |
|
| 0.1198 | 34.9954 | 3832 | 0.4194 | 0.3020 | 0.0531 | |
|
| 0.1136 | 36.0 | 3942 | 0.3916 | 0.3056 | 0.0534 | |
|
| 0.1186 | 36.9954 | 4051 | 0.3939 | 0.3040 | 0.0535 | |
|
| 0.1078 | 38.0 | 4161 | 0.4042 | 0.3011 | 0.0532 | |
|
| 0.108 | 38.9954 | 4270 | 0.4044 | 0.3000 | 0.0526 | |
|
| 0.1011 | 40.0 | 4380 | 0.4309 | 0.2997 | 0.0522 | |
|
| 0.106 | 40.9954 | 4489 | 0.4245 | 0.2941 | 0.0517 | |
|
| 0.0994 | 42.0 | 4599 | 0.4268 | 0.3059 | 0.0528 | |
|
| 0.0982 | 42.9954 | 4708 | 0.4239 | 0.2996 | 0.0524 | |
|
| 0.0956 | 44.0 | 4818 | 0.4175 | 0.2974 | 0.0525 | |
|
| 0.0931 | 44.9954 | 4927 | 0.4677 | 0.2934 | 0.0518 | |
|
| 0.0886 | 46.0 | 5037 | 0.4262 | 0.2979 | 0.0523 | |
|
| 0.0874 | 46.9954 | 5146 | 0.4274 | 0.2927 | 0.0514 | |
|
| 0.0882 | 48.0 | 5256 | 0.4230 | 0.2988 | 0.0524 | |
|
| 0.0856 | 48.9954 | 5365 | 0.4169 | 0.2872 | 0.0505 | |
|
| 0.0826 | 50.0 | 5475 | 0.4092 | 0.3034 | 0.0522 | |
|
| 0.0828 | 50.9954 | 5584 | 0.4383 | 0.2869 | 0.0507 | |
|
| 0.0798 | 52.0 | 5694 | 0.4201 | 0.2968 | 0.0512 | |
|
| 0.0761 | 52.9954 | 5803 | 0.3999 | 0.2871 | 0.0498 | |
|
| 0.0753 | 54.0 | 5913 | 0.4303 | 0.2914 | 0.0502 | |
|
| 0.0743 | 54.9954 | 6022 | 0.4424 | 0.2937 | 0.0507 | |
|
| 0.0788 | 56.0 | 6132 | 0.4214 | 0.2877 | 0.0495 | |
|
| 0.0752 | 56.9954 | 6241 | 0.4293 | 0.2925 | 0.0507 | |
|
| 0.0713 | 58.0 | 6351 | 0.4494 | 0.2919 | 0.0504 | |
|
| 0.0693 | 58.9954 | 6460 | 0.4297 | 0.2882 | 0.0498 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0.dev0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |
|
|