sulaimank's picture
End of training
e483c08 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v12
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: lg_ug
          split: None
          args: lg_ug
        metrics:
          - name: Wer
            type: wer
            value: 0.45568513119533527

wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v12

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5693
  • Wer: 0.4557
  • Cer: 0.0926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 70
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.8586 1.0 7125 0.4810 0.5615 0.1256
0.423 2.0 14250 0.4661 0.5633 0.1450
0.3588 3.0 21375 0.4151 0.5 0.1075
0.32 4.0 28500 0.3937 0.4999 0.1084
0.291 5.0 35625 0.3880 0.4866 0.1026
0.2685 6.0 42750 0.3779 0.4860 0.1035
0.2498 7.0 49875 0.3598 0.4660 0.0973
0.2347 8.0 57000 0.3553 0.4573 0.0936
0.2198 9.0 64125 0.3584 0.4630 0.0950
0.2072 10.0 71250 0.3571 0.4742 0.0983
0.1954 11.0 78375 0.3596 0.4580 0.0955
0.1861 12.0 85500 0.3626 0.4573 0.0952
0.1746 13.0 92625 0.3656 0.4972 0.1014
0.1656 14.0 99750 0.3712 0.4566 0.0918
0.1572 15.0 106875 0.3874 0.4569 0.0933
0.149 16.0 114000 0.3919 0.4809 0.0966
0.142 17.0 121125 0.3837 0.4424 0.0907
0.1332 18.0 128250 0.3843 0.4635 0.0941
0.1271 19.0 135375 0.4080 0.4560 0.0942
0.1203 20.0 142500 0.4209 0.4673 0.0929
0.1136 21.0 149625 0.4188 0.4632 0.0934
0.1084 22.0 156750 0.4369 0.4588 0.0930
0.1029 23.0 163875 0.4553 0.4735 0.0944
0.0993 24.0 171000 0.4547 0.4654 0.0941
0.0943 25.0 178125 0.4775 0.4561 0.0925
0.0902 26.0 185250 0.5074 0.4649 0.0935
0.0867 27.0 192375 0.5073 0.4509 0.0912
0.0833 28.0 199500 0.5150 0.4749 0.0953
0.0799 29.0 206625 0.5624 0.4725 0.0944
0.0771 30.0 213750 0.5769 0.4552 0.0918
0.0739 31.0 220875 0.5697 0.4533 0.0917
0.0704 32.0 228000 0.5693 0.4557 0.0926

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3